A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Signature of microscale kinetics in mesoscale description of epitaxial growth. | LitMetric

Signature of microscale kinetics in mesoscale description of epitaxial growth.

Phys Rev E

Department of Mathematics, Institute for Physical Science and Technology, and Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, Maryland 20742, USA.

Published: August 2017

We describe the effect of kinetic interactions of adsorbed atoms in a mesoscale model of epitaxial growth without elasticity. Our goal is to understand how atomic correlations due to kinetics leave their signature in mechanisms governing the motion of crystal line defects (steps) at the nanoscale. We focus on the key atomistic processes related to external material deposition, desorption, and asymmetric energy barriers on a stepped surface. By starting with a kinetic, restricted solid-on-solid model in 1+1 dimensions, we derive laws that govern the motion of a single step when deposition is nearly balanced out by desorption. These mesoscale laws reveal how kinetic processes, e.g., bond breaking at the step edge, influence step motion via the correlated motion of atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.96.020802DOI Listing

Publication Analysis

Top Keywords

epitaxial growth
8
signature microscale
4
microscale kinetics
4
kinetics mesoscale
4
mesoscale description
4
description epitaxial
4
growth describe
4
describe kinetic
4
kinetic interactions
4
interactions adsorbed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!