In this work a series of artificial neural networks (ANNs) has been developed with the capacity to estimate the size and location of an obstacle obstructing the flow in a pipe. The ANNs learn the size and location of the obstacle by reading the profiles of the dynamic pressure q or the x component of the velocity v_{x} of the fluid at a certain distance from the obstacle. Data to train the ANN were generated using numerical simulations with a two-dimensional lattice Boltzmann code. We analyzed various cases varying both the diameter and the position of the obstacle on the y axis, obtaining good estimations using the R^{2} coefficient for the cases under study. Although the ANN showed problems with the classification of very small obstacles, the general results show a very good capacity for prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.96.023306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!