Effects of monochloramine and hydrogen peroxide on the bacterial community shifts in biologically treated wastewater.

Chemosphere

NUS Environmental Research Institute, National University of Singapore, 117411, Singapore, Singapore; Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 943054020, USA. Electronic address:

Published: December 2017

Amending feed water with biocide is one of the strategy conventionally used to control biofouling in membrane-based water treatment systems. In this study, the impacts of two biocides, monochloramine (MCA) and hydrogen peroxide (HO), on the bacterial community in wastewater samples were investigated at equivalent biocidal efficiency levels. Viable bacterial numbers were determined before and after treatment for 10 min and 60 min using both culture-dependent heterotrophic plate count (HPC) and culture-independent propidium monoazide (PMA)-droplet digital PCR (ddPCR). Shifts of the live bacterial diversity were studied using high-throughput sequencing of 16S rRNA genes and followed by bioinformatics analysis. At the genus level, MCA treatment increased the relative abundance of Mycobacterium, Pseudomonas, Sphingomonas, Clostridium, Streptococcus, Undibacterium, Chryseobacterium and Cloacibacterium, while decreasing Arcobacter, Nitrospira and Sphingobium. HO treatment increased the relative abundance of Anaerolinea and Filimonas, and diminished Denitratisoma and Thauera. The findings of this study suggest a combination of different types of biocide may be the most efficient strategy for biofouling mitigation and increasing membrane treatment efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.09.087DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
peroxide bacterial
8
bacterial community
8
treatment increased
8
increased relative
8
relative abundance
8
treatment
5
effects monochloramine
4
monochloramine hydrogen
4
bacterial
4

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).

Methods: MSSA and E.

View Article and Find Full Text PDF

Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!