Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD) in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening. Recently, cyclic dinucleotides were shown to antagonize the effect of cyclic nucleotides in HCN4 but not in HCN2 channels. Based on the structural analysis and mutational studies it has been proposed that cyclic dinucleotides affect HCN4 channels by binding to the C-linker pocket (CLP). Here, we first show that surface plasmon resonance (SPR) can be used to accurately measure cyclic nucleotide binding affinity to the C-linker/CNBD of HCN2 and HCN4 channels. We then used SPR to investigate cyclic dinucleotide binding in HCN channels. To our surprise, we detected no binding of cyclic dinucleotides to the isolated monomeric C-linker/CNBDs of HCN4 channels with SPR. The binding of cyclic dinucleotides was further examined with isothermal calorimetry (ITC), which indicated no binding of cyclic dinucleotides to both monomeric and tetrameric C-linker/CNBDs of HCN4 channels. Taken together, our results suggest that interaction of the C-linker/CNBD with other parts of the channel is necessary for cyclic-dinucleotide binding in HCN4 channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5614581PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185359PLOS

Publication Analysis

Top Keywords

cyclic dinucleotides
20
hcn4 channels
20
hcn channels
16
binding cyclic
16
cyclic
12
channels
10
binding
9
cyclic nucleotide
8
cyclic dinucleotide
8
dinucleotide binding
8

Similar Publications

Activation of the cGAS-sting Pathway Mediated by Nanocomplexes for Tumor Therapy.

Curr Pharm Des

January 2025

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.

cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway is an natural immune response signaling pathway in the human body that is essential for sensing abnormal DNA aggregation in the cell. When the cGAS protein senses abnormal or damaged DNA, it forms a second messenger called cyclic dinucleotide (cGAMP). The cycled dinucleotide will activate the downstream STING protein, thereby inducing the expression of inflammatory cytokines such as type I interferon, which binds to receptors on its own cell membrane and ultimately initiates multiple immune response pathways.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment.

Int J Nanomedicine

January 2025

Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.

The microenvironment tends to be immunosuppressive during tumor growth and proliferation. Immunotherapy has attracted much attention because of its ability to activate tumor-specific immune responses for tumor killing. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an innate immune pathway that activates antitumor immunity by producing type I interferons.

View Article and Find Full Text PDF

Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response.

View Article and Find Full Text PDF

Radiation-resistant bacteria are of great application potential in various fields, including bioindustry and bioremediation of radioactive waste. However, how radiation-resistant bacteria combat against invading phages is seldom addressed. Here, we present a series of crystal structures of a sensor and an effector of the cyclic oligonucleotide-based anti-phage signaling system (CBASS) from a radioresistant bacterium Deinococcus wulumuqiensis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!