Three-Dimensional Molecular Alignment Inside Helium Nanodroplets.

Phys Rev Lett

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark.

Published: August 2017

We demonstrate 3D spatial alignment of 3,5-dichloroiodobenzene molecules embedded in helium nanodroplets using nonresonant elliptically polarized 160 ps laser pulses at a 1 kHz repetition rate. Through Coulomb explosion imaging and ion-ion covariance mapping, the 3D alignment is characterized and found to be stronger than that of isolated molecules. The 3D alignment follows the intensity profile of the alignment laser pulse almost adiabatically, except for a delayed response in the helium droplets, which could be exploited for field-free 3D alignment. Our results pave the way for next-generation molecular dynamics and diffraction experiments, performed within a cold helium solvent.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.073202DOI Listing

Publication Analysis

Top Keywords

helium nanodroplets
8
alignment
6
three-dimensional molecular
4
molecular alignment
4
alignment inside
4
helium
4
inside helium
4
nanodroplets demonstrate
4
demonstrate spatial
4
spatial alignment
4

Similar Publications

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!