Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nuclear quantum effects (NQEs) have a significant influence on the hydrogen bonds in water and aqueous solutions and have thus been the topic of extensive studies. However, the microscopic origin and the corresponding temperature dependence of NQEs have been elusive and still remain the subject of ongoing discussion. Previous x-ray scattering investigations indicate that NQEs on the structure of water exhibit significant temperature dependence [Phys. Rev. Lett. 94, 047801 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.047801]. Here, by performing wide-angle x-ray scattering of H_{2}O and D_{2}O droplets at temperatures from 275 K down to 240 K, we determine the temperature dependence of NQEs on the structure of water down to the deeply supercooled regime. The data reveal that the magnitude of NQEs on the structure of water is temperature independent, as the structure factor of D_{2}O is similar to H_{2}O if the temperature is shifted by a constant 5 K, valid from ambient conditions to the deeply supercooled regime. Analysis of the accelerated growth of tetrahedral structures in supercooled H_{2}O and D_{2}O also shows similar behavior with a clear 5 K shift. The results indicate a constant compensation between NQEs delocalizing the proton in the librational motion away from the bond and in the OH stretch vibrational modes along the bond. This is consistent with the fact that only the vibrational ground state is populated at ambient and supercooled conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.075502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!