The biodegradation of pesticides by organophosphorus hydrolases (OPHs) requires an efficient enzyme production technology in industry. Herein, a Pichia pastoris strain was constructed for the extracellular expression of PoOPH, an engineered malathion-degrading enzyme. After optimization, the maximum titer and yield of fermentation reached 50.8 kU/L and 4.1 g/L after 3 days, with the highest space-time yield (STY) reported so far, 640 U L h. PoOPH displayed its high activity and stability in the presence of 0.1% (w/w) plant-derived detergent. Only 0.04 mg/mL enzyme could completely remove 0.15 mM malathion in aqueous solution within 20 min. Furthermore, 12 μmol malathion on apples and cucumbers surfaces was completely removed by 0.05 mg/mL PoOPH in tap water after 35 min washing. The efficient production of the highly active PoOPH has cleared a major barrier to biodegradation of pesticide residues in food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b03405DOI Listing

Publication Analysis

Top Keywords

pichia pastoris
8
efficient degradation
4
degradation malathion
4
malathion presence
4
presence detergents
4
detergents engineered
4
engineered organophosphorus
4
organophosphorus hydrolase
4
hydrolase highly
4
highly expressed
4

Similar Publications

A Rewired NADPH-Dependent Redox Shuttle for Testing Peroxisomal Compartmentalization of Synthetic Metabolic Pathways in .

Microorganisms

December 2024

Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain.

The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast .

View Article and Find Full Text PDF

[Improvement of catalytic activity and thermostability of glucose oxidase from ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation.

View Article and Find Full Text PDF

The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two CH zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein.

View Article and Find Full Text PDF

Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.

View Article and Find Full Text PDF

Current Understanding on the Heterogenous Expression of Plastic Depolymerising Enzymes in .

Bioengineering (Basel)

January 2025

AgResearch Ltd., Grasslands, Palmerston North 4442, New Zealand.

Enzymatic depolymerisation is increasingly recognised as a reliable and environmentally friendly method. The development of this technology hinges on the availability of high-quality enzymes and associated bioreaction systems for upscaling biodegradation. Microbial heterologous expression systems have been studied for meeting this demand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!