Exploring highly efficient electro-catalysts is of significant urgency for the widespread uptake of the direct methanol fuel cells (DMFCs). Pt-Co nanocrystals have attracted considerable attentions because of their superior catalytic performance toward both methanol oxidation and oxygen reduction in the preliminary assessments. This Research Article presents a Pt-Co bimetal catalyst that is synthesized through a facile coreduction strategy. The Pt-Co nanocrystals have concave cubic shape with a high uniform size of 7-9 nm and Pt-rich surfaces. The catalysis of the concave cubic Pt-Co nanoparticles toward both methanol electrochemical oxidation reaction (MOR) and oxygen electrochemical reduction reaction (ORR) is evaluated. In comparison with the commercial Pt/C catalyst (Johnson Matthey), the present concave cubic Pt-Co catalyst displays superior performances in not only catalytic activity but also durability. The concave Pt-Co catalyst also shows higher activities than spherical and cubic Pt-Co nanoparticles. The dramatic enhancement is mainly attributed to its alloyed composition, Pt-rich surface and the concave nanostructure. The results of our research indicate that the concave Pt-Co nanocrystal could be a promising catalyst for both MOR and ORR. The present work might also raise more concerns on exploiting morphology and composition of nanocrystal catalysts, which are expected to provide high catalytic performance in electrochemical reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b10209DOI Listing

Publication Analysis

Top Keywords

concave cubic
12
cubic pt-co
12
superior catalytic
8
methanol electrochemical
8
electrochemical oxidation
8
oxidation oxygen
8
oxygen electrochemical
8
electrochemical reduction
8
pt-co
8
pt-co nanocrystals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!