We theoretically demonstrate that a type-II class of tilted Dirac cones can emerge in generalized two-dimensional anisotropic lattice arrangements. This is achieved by introducing a special set of graphynelike exchange bonds by means of which the complete spectrum of the underlying Weyl Hamiltonian can be realized. Our ab initio calculations demonstrate a unique class of eigensolutions corresponding to a type-II class of Dirac fermionic excitations. Based on our approach, one can systematically synthesize a wide range of strongly anisotropic band diagrams having tilted Dirac cones with variable location and orientation. Moreover, we show that asymmetric conical diffraction, as well as edge states, can arise in these configurations. Our results can provide a versatile platform to observe, for the first time, optical transport around type-II Dirac points in two-dimensional optical settings under linear, nonlinear, and non-Hermitian conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.119.113901 | DOI Listing |
Inorg Chem
November 2024
College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, P. R. China.
The type-II Dirac candidate semimetal WSi is a promising candidate for electronic devices, quantum computing, and topological materials research, owing its distinct electronic structure and superior mechanical properties. Here, we synthesized high-quality WSi materials and systematically investigated their compressive behavior, and structural and electronic properties under high pressure using in-situ high pressure experiments, complemented by first-principles calculations. The results confirms that WSi has the properties of a type-II Dirac semimetal.
View Article and Find Full Text PDFCommun Phys
October 2024
Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany.
Superconducting diode effects have recently attracted much attention for their potential applications in superconducting logic circuits. Several pathways have been proposed to give rise to non-reciprocal critical currents in various superconductors and Josephson junctions. In this work, we establish the presence of a large Josephson diode effect in a type-II Dirac semimetal 1T-PtTe facilitated by its helical spin-momentum locking and distinguish it from extrinsic geometric effects.
View Article and Find Full Text PDFNano Lett
September 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
Topological superconductors (TSCs) offer a promising avenue for delving into exotic states of matter and fundamental physics. We propose a strategy for realizing high transition temperatures (high-) in TSCs by leveraging nontrivial topology alongside a high carrier density near the Fermi level in metal-doped borophenes. We identified 39 candidates with exceptional thermodynamic stability from thousands of Be-intercalated borophenes (BeB) via extensive structural searches.
View Article and Find Full Text PDFThe type-II Dirac cone is a special feature of the band structure, whose Fermi level is represented by a pair of crossing lines. It has been demonstrated that such a structure is useful for investigating topological edge solitons and, more specifically, for mimicking the Klein tunneling. However, it is still not clear what the interplay between type-II Dirac cones and the non-Hermiticity mechanism will result in.
View Article and Find Full Text PDFACS Nano
August 2024
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China.
The detection of mid-infrared light, covering a variety of molecular vibrational spectra, is critical for both civil and military purposes. Recent studies have highlighted the potential of two-dimensional topological semimetals for mid-infrared detection due to their advantages, including van der Waals (vdW) stacking and gapless electronic structures. Among them, mid-infrared photodetectors based on type-II Dirac semimetals have been less studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!