Atomic Clock Measurements of Quantum Scattering Phase Shifts Spanning Feshbach Resonances at Ultralow Fields.

Phys Rev Lett

Joint Quantum Centre (JQC) Durham-Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.

Published: September 2017

We use an atomic fountain clock to measure quantum scattering phase shifts precisely through a series of narrow, low-field Feshbach resonances at average collision energies below 1  μK. Our low spread in collision energy yields phase variations of order ±π/2 for target atoms in several F, m_{F} states. We compare them to a theoretical model and establish the accuracy of the measurements and the theoretical uncertainties from the fitted potential. We find overall excellent agreement, with small statistically significant differences that remain unexplained.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.119.113401DOI Listing

Publication Analysis

Top Keywords

quantum scattering
8
scattering phase
8
phase shifts
8
feshbach resonances
8
atomic clock
4
clock measurements
4
measurements quantum
4
shifts spanning
4
spanning feshbach
4
resonances ultralow
4

Similar Publications

Surface-enhanced Raman scattering of R6G dimerization during self-healing of gel.

Mikrochim Acta

January 2025

Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan.

Traditional surface-enhanced Raman scattering (SERS) substrates seeking uniformity and reproducibility of the Raman signal often assume and require that hot spots remain consistently stable during Raman testing. Recently, the non-uniform accumulation in SERS sample pre-concentration strategies have inspired the direct use of self-healing noble metal aerogels (NMAs), as the sample pretreatment presented in this work, and uncovered more diverse Raman information of substances during the dynamic process of laser irradiation. Rare characteristic peaks such as 820 cm⁻ for R6G within a specific concentration range were observed, and potential processes including R6G dimerization and desorption were analyzed.

View Article and Find Full Text PDF

We present state-to-state differential cross sections for rotationally inelastic collisions of vibrationally excited NO XΠ ( = 9) with Ar using a near-counterpropagating molecular beam geometry. These were obtained using the stimulated emission pumping technique coupled with velocity map imaging. Collision energies well over ∼1 eV were achieved and rotational excitations up to ∼Δ = 60 recorded for the first time for inelastic collisions.

View Article and Find Full Text PDF

Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory.

J Chem Theory Comput

January 2025

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

With the advancement of high harmonic generation and X-ray free-electron lasers (XFELs) to the attosecond domain, the studies of the ultrafast electron and spin dynamics became possible. Yet, the methods for efficient control and measurement of the quantum state are to be further developed. In this publication, we propose using magnetic X-ray scattering (MXS) for resolving the molecular spin-state dynamics and establish a complete protocol to simulate MXS diffraction patterns in molecules with ab initio quantum chemistry based on the multiconfigurational method.

View Article and Find Full Text PDF

This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!