Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular size plays an important role in dissolved organic matter (DOM) biogeochemistry, but its relationship with the fluorescent fraction of DOM (FDOM) remains poorly resolved. Here high-performance size exclusion chromatography (HPSEC) was coupled to fluorescence emission-excitation (EEM) spectroscopy in full spectral (60 emission and 34 excitation wavelengths) and chromatographic resolution (<1 Hz), to enable the mathematical decomposition of fluorescence on an individual sample basis by parallel factor analysis (PARAFAC). The approach allowed cross-system comparisons of molecular size distributions for individual fluorescence components obtained from independent data sets. Spectra extracted from allochthonous DOM were highly similar. Allochthonous and autochthonous DOM shared some spectra, but included unique components. In agreement with the supramolecular assembly hypothesis, molecular size distributions of the fluorescence fractions were broad and chromatographically unresolved, possibly representing reoccurring fluorophores forming noncovalently bound assemblies of varying molecular size. Samples shared underlying fluorescence components that differed in their size distributions but not their spectral properties. Thus, in contrast to absorption measurements, bulk fluorescence is unlikely to reliably indicate the average molecular size of DOM. The one-sample approach enables robust and independent cross-site comparisons without large-scale sampling efforts and introduces new analytical opportunities for elucidating the origins and biogeochemical properties of FDOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b03260 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!