Peripheral sensitivity to steroids revisited.

Physiol Res

Institute of Endocrinology, Prague, Czech Republic.

Published: September 2017

Resistance to steroid hormones presents a serious problem with respect to their mass use in therapy. It may be caused genetically by mutation of genes involved in hormonal signaling, not only steroid receptors, but also other players in the signaling cascade as co-regulators and other nuclear factors, mediating the hormone-born signal. Another possibility is acquired resistance which may develop under long-term steroid treatment, of which a particular case is down regulation of the receptors. In the review recent knowledge is summarized on the mechanism of main steroid hormone action, pointing to already proven or potential sites causing steroid resistance. We have attempted to address following questions: 1) What does stay behind differences among patients as to their response to the (anti)steroid treatment? 2) Why do various tissues/cells respond differently to the same steroid hormone though they contain the same receptors? 3) Are such differences genetically dependent? The main attention was devoted to glucocorticoids as the most frequently used steroid therapeutics. Further, androgen insensitivity is discussed with a particular attention to acquired resistance to androgen deprivation therapy of prostate cancer. Finally the potential causes are outlined of breast and related cancer(s) resistance to antiestrogen therapy.

Download full-text PDF

Source
http://dx.doi.org/10.33549/physiolres.933725DOI Listing

Publication Analysis

Top Keywords

acquired resistance
8
steroid hormone
8
steroid
7
resistance
5
peripheral sensitivity
4
sensitivity steroids
4
steroids revisited
4
revisited resistance
4
resistance steroid
4
steroid hormones
4

Similar Publications

The positive feedback loop between SP1 and MAP2K2 significantly drives resistance to VEGFR inhibitors in clear cell renal cell carcinoma.

Int J Biol Sci

January 2025

Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).

View Article and Find Full Text PDF

Cyclin D3 (CCND3), a member of the cyclin D family, is known to promote cell cycle transition. In this study, we found that CCND3 was downregulated in cisplatin-resistant (-diamminedichloroplatinum, DDP) lung adenocarcinoma (LUAD) cells. The loss of CCND3 indeed impeded cell cycle transition.

View Article and Find Full Text PDF

Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.

View Article and Find Full Text PDF

As a putative lung specific oncogene, the transducin-like enhancer of split 1 (TLE1) corepressor drives an anti-apoptotic and pro-epithelial-mesenchymal transition (EMT) gene transcriptional programs in human lung adenocarcinoma (LUAD) cells, thereby promoting anoikis resistance and tumor aggressiveness. Through its survival- and EMT-promoting gene regulatory programs, TLE1 may impact drug sensitivity and resistance in lung cancer cells. In the present study, a novel function of TLE1 was uncovered as an inhibitor of the antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) gefitinib in the human LUAD cell line A549, which exhibits moderate sensitivity to EGFR-TKI.

View Article and Find Full Text PDF

Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!