This study describes the synthesis of highly water-soluble, non-toxic, and biocompatible nicotinamide adenine dinucleotide (NAD)/glucosamine (=Nga1Fh) and NAD/glucosamine/gluconic acid coated ferrihydrite nanoparticles (=Nga2Fh) and their possible uses to target tumors in living animals via Tc and I radioisotope labeling. The structural properties were investigated using DLS, zeta potential, TEM, FT-IR, XRD, and Raman spectroscopy. The cell toxicity in CT26 cancer cells and in vivo tumor targetability in U87MG and CT26 tumor-bearing mice was further evaluated using cRGDyK-tagged and cRGDfK-tagged ferrihydrite nanoparticles. The average diameters of the resulting Nga1Fh and Nga2Fh nanoparticles were <5 to 7 and <3 nm, respectively. The Nga2Fh nanoparticles did not show cell toxicity until 0.1 mg/mL. Using gamma camera imaging, Tc-cRGDfK-Nga2Fh showed the highest tumor uptake in a U87MG tumor-bearing mouse when compared with that of Tc-cRGDyK-Nga2Fh and Tc-Nga2Fh. The image-based tumor-to-muscle ratio by time for Tc-cRGDfK-Nga2Fh was 3.8 ± 1.7, 4.2 ± 2.0, 7 ± 1.5, 13 ± 2.0, 8 ± 3.7, and 2 ± 1.6 at 5 and 30 minutes, 1, 2, 4, and 24 hours, respectively. Although further studies are needed, the NAD/monosaccharide coated ferrihydrite nanoparticles could be presented as an interesting material for a drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlcr.3565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!