A novel approach for rapid risk assessment of targeted leachables in medical device polymers is proposed and validated. Risk evaluation involves understanding the potential of these additives to migrate out of the polymer, and comparing their exposure to a toxicological threshold value. In this study, we propose that a simple diffusive transport model can be used to provide conservative exposure estimates for phase separated color additives in device polymers. This model has been illustrated using a representative phthalocyanine color additive (manganese phthalocyanine, MnPC) and polymer (PEBAX 2533) system. Sorption experiments of MnPC into PEBAX were conducted in order to experimentally determine the diffusion coefficient, D = (1.6 ± 0.5) × 10 cm/s, and matrix solubility limit, C  = 0.089 wt.%, and model predicted exposure values were validated by extraction experiments. Exposure values for the color additive were compared to a toxicological threshold for a sample risk assessment. Results from this study indicate that a diffusion model-based approach to predict exposure has considerable potential for use as a rapid, screening-level tool to assess the risk of color additives and other small molecule additives in medical device polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-017-1931-4DOI Listing

Publication Analysis

Top Keywords

device polymers
16
risk assessment
12
medical device
12
conservative exposure
8
rapid risk
8
additives medical
8
toxicological threshold
8
color additives
8
color additive
8
exposure values
8

Similar Publications

Controllable Self-Assembly Morphologies of PPV-Based Block Copolymers.

Chemistry

January 2025

Southern University of Science and Technology, Chemistry, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, CHINA.

Poly(p-phenylenevinylene) (PPV) is a classic semiconducting π-conjugated polymers with outstanding optical and electronic properties, which shows important applications in the fields of optoelectronic, such as organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs). In the working process of the device, the microstate of PPV decides its property. Therefore, it is significant to achieve ordered morphologies based on PPV at micro scale.

View Article and Find Full Text PDF

Amplification-free detection of using CRISPR-Cas12a and graphene field-effect transistors.

Nanoscale

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Current molecular tests for tuberculosis (TB), such as whole genome sequencing and Xpert /rifampicin resistance assay, exhibit limited sensitivity and necessitate the pre-amplification step of target DNA. This limitation greatly increases detection time and poses an increased risk of infection. Here, we present a graphene field-effect transistor (GFET) based on the CRISPR/Cas system for detecting .

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Nanoporous organic polymers (NPOPs) have emerged as versatile materials with robust thermal stability, large surface area (up to 2500 m g), and customizable porosity, making them ideal candidates for advanced hydrogen (H) storage applications. This review provides a comprehensive analysis of various NPOPs, including covalent organic frameworks (COFs), hypercrosslinked polymers (HCLPs), conjugated microporous polymers (CMPs), and porous aromatic frameworks (POAFs). Notably, these materials demonstrate superior H storage capacities, achieving up to 10 wt% at cryogenic temperatures, which is essential for applying H as a clean energy carrier.

View Article and Find Full Text PDF

The utilization of liquid crystals (LC) as materials has enabled the enlargement of lenses with the potential to alter their focus. Tunable LC lenses with adjustable focus are essential for optical imaging, sensing, and detection devices. This technology offers many benefits, such as the ability to adjust focus, operate with low power, and be easily made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!