The fountain effect of ice-like water across nanotubes at room temperature.

Phys Chem Chem Phys

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: November 2017

The well-known fountain effect of superfluid helium can directly convert heat to mechanical work by the transport of the superfluid across narrow channels under a temperature difference. But it is regarded as a unique feature of superfluids, only occurring below the temperature of 2.17 K. Here we report a peculiar fountain effect of ice-like water across nanotubes at room temperature. Based on molecular simulations, we observed fascinating ultrafast fountain flow across nanotubes from the cold side to the hot side under a small temperature difference, due to the near-dissipationless nature of ice-like ordered water inside the nanotubes. Water molecules exhibit collective behavior and spontaneously convert thermal energy from the surrounding into directed motion without dissipation. A surprising pressure difference of up to 256 bar is generated from a temperature difference of 23 K, almost reaching the thermodynamic limit. This finding is anticipated to provide a new protocol for power harvesting devices, heat engines and nanomotors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp04693fDOI Listing

Publication Analysis

Top Keywords

temperature difference
12
fountain ice-like
8
ice-like water
8
water nanotubes
8
nanotubes room
8
room temperature
8
temperature
6
fountain
4
water
4
nanotubes
4

Similar Publications

Mass transfer governs the overall catalytic performance of heterogeneous catalysts considerably; however, this fundamental research has often been ignored. Here, macroporous SiO-supported Pt nanoparticle (Pt/SiO-M) and mesoporous SiO-supported Pt nanoparticle (Pt/SiO-m) catalysts were specifically fabricated by a facile thermal reduction step to engineer the resultant Pt nanoparticles showing similar physiochemical properties while possessing completely different porous microstructures exclusively originating from SiO supports. On this basis, a platform to explore the crucial mass transfer difference affecting catalytic activity is then established by systematically practicing industry-important benzene oxidation measurements.

View Article and Find Full Text PDF

Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.

View Article and Find Full Text PDF

Background: Blood-based biomarkers, especially P-tau217, have been gaining interest as diagnostic tools to measure Alzheimer disease (AD) pathology.

Methods: We developed a plasma P-tau217 chemiluminescent immunoassay using 4G10E2 and IBA493 as antibodies, a synthetic tau peptide as calibrator, and the Quanterix SP-X imager. Analytical validation performed in a College of American Pathologists-accredited CLIA laboratory involved multiple kit lots, operators, timepoints, and imagers.

View Article and Find Full Text PDF

Phenotypic plasticity in body growth enables organisms to cope with unpredictable paucities in resource availability. Growth traits influence survival and reproductive success, and thereby, population persistence, and early-life resource availability may govern lifetime patterns in growth, reproductive success, and survival. The influence of early-life environment is decidedly consequential for indeterminately growing ectotherms, which rely on available resources and ambient temperatures to maximize fitness throughout life.

View Article and Find Full Text PDF

The effect of atomic vibration on thermal transport in diatomic semiconductors investigated molecular dynamics.

Nanoscale

January 2025

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.

Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!