Asymmetric responses to simulated global warming by populations of along a latitudinal gradient.

PeerJ

Centro de Ecología Molecular y Aplicaciones Evolutivas en Agroecosistemas (CEM), Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.

Published: September 2017

The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607920PMC
http://dx.doi.org/10.7717/peerj.3718DOI Listing

Publication Analysis

Top Keywords

global warming
28
expected global
12
populations
9
warming
8
latitudinal gradient
8
plant populations
8
observed southern
8
foliar traits
8
traits photoprotective
8
photoprotective mechanisms
8

Similar Publications

Shifting community assembly dynamics are an underappreciated mechanism by which warming will alter plant community composition. Germination timing (which can determine the order in which seedlings emerge within a community) will likely shift unevenly across species in response to warming. In seasonal environments where communities reassemble at the beginning of each growing season, changes in germination timing could lead to changes in seasonal priority effects, and ultimately community composition.

View Article and Find Full Text PDF

An ML-Enhanced Laser-Based Methane Slip Sensor Using Wavelength Modulation Spectroscopy.

ACS Sens

January 2025

Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.

View Article and Find Full Text PDF

Do wood-boring beetles influence the flammability of deadwood?

Ecology

January 2025

Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Global warming increases the risk of wildfire and insect outbreaks, potentially reducing the carbon storage function of coarse woody debris (CWD). There is an increasing focus on the interactive effects of wildfire and insect infestation on forest carbon, but the impact of wood-boring beetle tunnels via their effect on the flammability of deadwood remains unexplored. We hypothesized that the presence of beetle holes, at natural densities, can affect its flammability positively through increased surface area and enhanced oxygen availability in the wood.

View Article and Find Full Text PDF

Enhancing the co-utilization of methanol and CO into 1-butanol by equipping synergistic reductive glycine pathway in Butyribacterium methylotrophicum.

Bioresour Technol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:

The biological fixation of CO and C1-feedstocks like methanol derived from CO are considered as an important technology combating in global warming issues. The microorganisms that can co-assimilate CO and methanol are highly desired. Here, we constructed a synergistic assimilation pathway in Butyribacterium methylotrophicum (B.

View Article and Find Full Text PDF

Tropical peatlands are significant sources of methane (CH₄), but their contribution to the global CH₄ budget remains poorly quantified due to the lack of long-term, continuous and high-frequency flux measurements. To address this gap, we measured net ecosystem CH exchange (NEE-CH) using eddy covariance technique throughout the conversion of a tropical peat swamp forest to an oil palm plantation. This encompassed the periods before, during and after conversion periods from 2014 to 2020, during which substantial environmental shifts were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!