Extracellular voltage recordings ( ; field potentials) provide an accessible view of neural activity, but proper interpretation of field potentials is a long-standing challenge. Computational modeling can aid in identifying neural generators of field potentials. In the auditory brainstem of cats, spatial patterns of sound-evoked can resemble, strikingly, generated by current dipoles. Previously, we developed a biophysically-based model of a binaural brainstem nucleus, the medial superior olive (MSO), that accounts qualitatively for observed dipole-like patterns in sustained responses to monaural tones with frequencies >∼1000 Hz (Goldwyn et al., 2014). We have observed, however, that patterns in cats of both sexes appear more monopole-like for lower-frequency tones. Here, we enhance our theory to accurately reproduce dipole and non-dipole features of responses to monaural tones with frequencies ranging from 600 to 1800 Hz. By applying our model to data, we estimate time courses of paired input currents to MSO neurons. We interpret these inputs as dendrite-targeting excitation and soma-targeting inhibition (the latter contributes non-dipole-like features to responses). Aspects of inferred inputs are consistent with synaptic inputs to MSO neurons including the tendencies of inhibitory inputs to attenuate in response to high-frequency tones and to precede excitatory inputs. Importantly, our updated theory can be tested experimentally by blocking synaptic inputs. MSO neurons perform a critical role in sound localization and binaural hearing. By solving an inverse problem to uncover synaptic inputs from patterns we provide a new perspective on MSO physiology. Extracellular voltages (field potentials) are a common measure of brain activity. Ideally, one could infer from these data the activity of neurons and synapses that generate field potentials, but this "inverse problem" is not easily solved. We study brainstem field potentials in the region of the medial superior olive (MSO); a critical center in the auditory pathway. These field potentials exhibit distinctive spatial and temporal patterns in response to pure tone sounds. We use mathematical modeling in combination with physiological and anatomical knowledge of MSO neurons to plausibly explain how dendrite-targeting excitation and soma-targeting inhibition generate these field potentials. Inferring putative synaptic currents from field potentials advances our ability to study neural processing of sound in the MSO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596620PMC
http://dx.doi.org/10.1523/JNEUROSCI.0600-17.2017DOI Listing

Publication Analysis

Top Keywords

field potentials
40
mso neurons
16
synaptic inputs
12
field
10
potentials
10
auditory brainstem
8
brainstem field
8
medial superior
8
superior olive
8
mso
8

Similar Publications

StarTrack: Mapping Cellular Fates with Inheritable Color Codes.

Methods Mol Biol

January 2025

Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

StarTrack is a powerful multicolor genetic tool designed to unravel cellular lineages arising from neural progenitor cells (NPCs). This innovative technique, based on retrospective clonal analysis and built upon the PiggyBac system, creates a unique and inheritable "color code" within NPCs. Through the stochastic integration of 12 distinct plasmids encoding six fluorescent proteins, StarTrack enables precise and comprehensive tracking of cellular fates and progenitor potentials.

View Article and Find Full Text PDF

Introduction: Chronic kidney disease-associated pruritus (CKD-aP) is a common, yet underdiagnosed condition among patients on hemodialysis. Considering the lack of established treatment pathways, we sought to evaluate the use of antidepressant, systemic antihistamines, or gabapentinoid medications among patients with CKD-aP in the year following pruritus assessment.

Methods: We included 6209 patients on hemodialysis in the analysis.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering of R6G dimerization during self-healing of gel.

Mikrochim Acta

January 2025

Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan.

Traditional surface-enhanced Raman scattering (SERS) substrates seeking uniformity and reproducibility of the Raman signal often assume and require that hot spots remain consistently stable during Raman testing. Recently, the non-uniform accumulation in SERS sample pre-concentration strategies have inspired the direct use of self-healing noble metal aerogels (NMAs), as the sample pretreatment presented in this work, and uncovered more diverse Raman information of substances during the dynamic process of laser irradiation. Rare characteristic peaks such as 820 cm⁻ for R6G within a specific concentration range were observed, and potential processes including R6G dimerization and desorption were analyzed.

View Article and Find Full Text PDF

Tomato is an important crop worldwide, but groundnut bud necrosis virus (GBNV) often hampers its growth. This study investigates the antiviral potential of bacterial endophytes, including CNEB54, CNEB4, CNEB26, and BAVE5 against GBNV, as well as their ability to enhance immunity and growth in tomato. All four bacterial isolates demonstrated a significant delay in GBNV symptom development 10 days post-inoculation, with disease incidence ranging from 18% to 36% compared to 84% in control.

View Article and Find Full Text PDF

Unlabelled: Human papillomavirus (HPV) genotype predicts cervical cancer risk, and genotyping could help guide the management of HPV positives as part of cervical screening. An isothermal amplification HPV extended genotyping test (ScreenFire HPV RS assay) can assay up to 96 samples/controls in 1 hour plus preparation time. A novel format with pre-aliquoted reagents and an anti-contamination component (Zebra BioDome) could simplify the HPV testing process and reduce the chances of post-amplification contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!