SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy.

Circulation

Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (X.T., X.-F.C., N.-Y.W., X.-M.W., S.-T.L., W.Z., X.Z., D.-L.H., Z.-Q.Z., H.-Z.C., D.-P.L.)

Published: November 2017

Background: Pathological cardiac hypertrophy induced by stresses such as aging and neurohumoral activation is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the roles of SIRT2 in aging-related and angiotensin II (Ang II)-induced pathological cardiac hypertrophy.

Methods: Male C57BL/6J wild-type and knockout mice were subjected to the investigation of aging-related cardiac hypertrophy. Cardiac hypertrophy was also induced by Ang II (1.3 mg/kg/d for 4 weeks) in male C57BL/6J knockout mice, cardiac-specific transgenic (-Tg) mice, and their respective littermates (8 to ≈12 weeks old). Metformin (200 mg/kg/d) was used to treat wild-type and knockout mice infused with Ang II. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice.

Results: SIRT2 protein expression levels were downregulated in hypertrophic hearts from mice. knockout markedly exaggerated cardiac hypertrophy and fibrosis and decreased cardiac ejection fraction and fractional shortening in aged (24-month-old) mice and Ang II-infused mice. Conversely, cardiac-specific overexpression protected the hearts against Ang II-induced cardiac hypertrophy and fibrosis and rescued cardiac function. Mechanistically, SIRT2 maintained the activity of AMP-activated protein kinase (AMPK) in aged and Ang II-induced hypertrophic hearts in vivo as well as in cardiomyocytes in vitro. We identified the liver kinase B1 (LKB1), the major upstream kinase of AMPK, as the direct target of SIRT2. SIRT2 bound to LKB1 and deacetylated it at lysine 48, which promoted the phosphorylation of LKB1 and the subsequent activation of LKB1-AMPK signaling. Remarkably, the loss of SIRT2 blunted the response of AMPK to metformin treatment in mice infused with Ang II and repressed the metformin-mediated reduction of cardiac hypertrophy and protection of cardiac function.

Conclusions: SIRT2 promotes AMPK activation by deacetylating the kinase LKB1. Loss of SIRT2 reduces AMPK activation, promotes aging-related and Ang II-induced cardiac hypertrophy, and blunts metformin-mediated cardioprotective effects. These findings indicate that SIRT2 will be a potential target for therapeutic interventions in aging- and stress-induced cardiac hypertrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698109PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028728DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
44
cardiac
16
pathological cardiac
16
ang ii-induced
16
knockout mice
12
hypertrophy fibrosis
12
hypertrophy
11
sirt2
10
hypertrophy induced
8
heart failure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!