Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In fish, the stress hormone cortisol is released through the action of the hypothalamic pituitary interrenal axis (HPI-axis). The reactivity of this axis differs between individuals and previous studies have linked this to different behavioural characteristics and stress coping styles. In the current study, low and high responding (LR and HR) rainbow trout in terms of cortisol release during stress were identified, using a repeated confinements stress test. The expression of stress related genes in the forebrain and the integrity of the stress sensitive primary barrier of the intestine was examined. The HR trout displayed higher expression levels of mineralocorticoid and serotonergic receptors and serotonergic re-uptake pumps in the telencephalon during both basal and stressed conditions. This confirms that HPI-axis reactivity is linked also to other neuronal behavioural modulators, as both the serotonergic and the corticoid system in the telencephalon are involved in behavioural reactivity and cognitive processes. Involvement of the HPI-axis in the brain-gut-axis was also found. LR trout displayed a lower integrity in the primary barrier of the intestine during basal conditions compared to the HR trout. However, following stress exposure, LR trout showed an unexpected increase in intestinal integrity whereas the HR trout instead suffered a reduction. This could make the LR individuals more susceptible to pathogens during basal conditions where instead HR individuals would be more vulnerable during stressed conditions. We hypothesize that these barrier differences are caused by regulation/effects on tight junction proteins possibly controlled by secondary effects of cortisol on the intestinal immune barrier or differences in parasympathetic reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2017.09.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!