Dendritic cell (DC) vaccine-based immunotherapy for glioblastoma multiforme (GBM) has shown apparent benefit in animal experiments and early-phase clinical trials, but the survival benefit is variable. In this work, we analyzed the mechanism of the potent antitumor immune response induced in vivo by tumor-associated antigen (TAA)-specific DCs with an invariant natural killer T (iNKT) cell adjuvant in orthotopic glioblastoma-bearing rats vaccinated with tumor-derived exosomes and α-galactosylceramide (α-GalCer) -pulsed DCs. Compared with traditional tumor lysate, exosomes were utilized as a more potent antigen to load DCs. iNKT cells, as an effective cellular adjuvant activated by α-GalCer, strengthened TAA presentation through their interaction with DCs. Co-delivery of tumor-derived exosomes with α-GalCer on a DC-based vaccine showed powerful effects in glioblastoma immunotherapy. This vaccine induced strong activation and proliferation of tumor-specific cytotoxic T lymphocytes, synergistically breaking the immune tolerance and improving the immunosuppressive environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2017.09.022 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China. Electronic address:
Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. Electronic address:
Exosomes are critical mediators of cell-to-cell communication in physiological and pathological processes, due to their ability to deliver a variety of bioactive molecules. Tumor-derived exosomes (TDEs), in particular, carry carcinogenic molecules that contribute to tumor progression, metastasis, immune escape, and drug resistance. Thus, TDE inhibition has emerged as a promising strategy to combat cancer.
View Article and Find Full Text PDFSci Data
January 2025
Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
Cardiac myxoma (CM) is an important aetiology of stroke in young adults, and its diagnosis is difficult in patients having stroke because of the lack of diagnostic biomarkers. Tumour-derived exosomes play a crucial role in tumour growth, metastasis, immune regulation, and monitor disease development. Hence,we established an RNA-sequencing dataset for long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) in the plasma and tumour-derived exosomes from four patients with cardiac myxoma-related ischaemic stroke (CM-IS) and six patients with cardiac myxoma without ischaemic stroke (non-IS CM).
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
In situ tumor vaccines, which utilize antigens generated during tumor treatment to stimulate a cancer patient's immune system, has become a potential field in cancer immunotherapy. However, due to the immunosuppressive tumor microenvironment (ITME), the generation of tumor antigens is always mild and not sufficient. Tumor-resident intracellular bacteria have been identified as a complete tumor microenvironment component to contribute to creating ITME.
View Article and Find Full Text PDFBBA Adv
December 2024
University of São Paulo, Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), São Paulo, 05508-000, Brazil.
Metastases are the leading cause of cancer-related deaths, and their origin is not fully elucidated. Recently, studies have shown that extracellular vesicles (EVs), particularly small extracellular vesicles (sEV), can disrupt the homeostasis of organs, promoting the development of a secondary tumor. However, the role of sEV in brain endothelium and their association with metastasis related to breast cancer is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!