Background And Objective: Both thermal imaging and 3D scanning offer convenient advantages for medical applications, namely, being contactless, non-invasive and fast. Consequently, many approaches have been proposed to combine both sensing modalities in order to acquire 3D thermal models. The predominant approach is to affix a 3D scanner and a thermal camera in the same support and calibrate them together. While this approach allows straightforward projection of thermal images over the 3D mesh, it requires their simultaneous acquisition. In this work, a method for generation of 3D thermal models that allows combination of separately acquired 3D mesh and thermal images is presented. Among the advantages of this decoupled acquisition are increased modularity of acquisition procedures and reuse of legacy equipment and data.
Methods: The proposed method is based on the projection of thermal images over a 3D mesh. Unlike previous methods, it is considered that the 3D mesh and the thermal images are acquired separately, so camera pose estimation is required to determine the correct spatial positioning from which to project the images. This is done using Structure from Motion, which requires a series of interest points correspondences between the images, for which the SIFT method was used. As thermal images of human skin are predominantly homogeneous, an intensity transformation is proposed to increase the efficacy of interest point detection and make the approach feasible. Before projection, the adequate alignment of the 3D mesh in space is determined using Particle Swarm Optimization. For validation of the method, the design and implementation of a test object is presented. It can be used to validate other methods and can be reproduced with common printed circuit board manufacturing processes.
Results: The proposed approach is accurate, with an average displacement error of 1.41 mm (s = 0.74 mm) with the validation test object and 4.58 mm (s = 2.12 mm) with human subjects.
Conclusions: The proposed method is able to combine separately a acquired 3D mesh and thermal images into an accurate 3D thermal model. The results with human subjects suggest that the method can be successfully employed in medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2017.08.009 | DOI Listing |
Small Methods
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, TN 37830, USA.
Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying 257335, China.
In this study, the response surface methodology was first utilized to optimize the enzyme treatment conditions as reaction pH, temperature, time and enzyme dosage of 9.5, 45 °C, 94.5 min and 100 U/L.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China.
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics.
View Article and Find Full Text PDFBackground: The early detection of neurologic damage at the microscopic level when the disease is subclinical would facilitate intervention preventing progression or potentially reversing the condition. The early determination of drug efficacy could shorten the length of drug studies, thereby reducing research costs. The eye is the only place in the body where an artery, vein, and nerve can be directly visualized The nerve fiber layer of the retina is an outgrowth of the brain.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: The goal of the TREAT-AD Center is to enable drug discovery by developing assays and providing tool compounds for novel and emerging targets. The role of microglia in neuroinflammation has been implicated in the pathogenesis of Alzheimer's disease (AD). Genome-wide association studies, whole genome sequencing, and gene-expression network analyses comparing normal to AD brain have identified risk and protective variants in genes essential to microglial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!