Background And Objective: Digital tomosynthesis (DTS) based on filtered-backprojection (FBP) reconstruction requires a full field-of-view (FOV) scan and relatively dense projections, which results in high doses for medical imaging purposes. To overcome these difficulties, we investigated region-of-interest (ROI) or interior DTS reconstruction where the x-ray beam span covers only a small ROI containing a target area.
Methods: An iterative method based on compressed-sensing (CS) scheme was compared with the FBP-based algorithm for ROI-DTS reconstruction. We implemented both algorithms and performed a systematic simulation and experiments on body and skull phantoms. The image characteristics were evaluated and compared.
Results: The CS-based algorithm yielded much better reconstruction quality in ROI-DTS compared to the FBP-based algorithm, preserving superior image homogeneity, edge sharpening, and in-plane resolution. The image characteristics of the CS-reconstructed images in ROI-DTS were not significantly different from those in full-FOV DTS. The measured CNR value of the CS-reconstructed ROI-DTS image was about 12.3, about 1.9 times larger than that of the FBP-reconstructed ROI-DTS image.
Conclusions: ROI-DTS images of substantially high accuracy were obtained using the CS-based algorithm and at reduced imaging doses and less computational cost, compared to typical full-FOV DTS images. We expect that the proposed method will be useful for the development of new DTS systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2017.08.022 | DOI Listing |
AJR Am J Roentgenol
January 2025
Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Phoenix, AZ.
Contrast-enhanced mammography (CEM) is growing in clinical use due to its increased sensitivity and specificity compared to full-field digital mammography (FFDM) and/or digital breast tomosynthesis (DBT), particularly in patients with dense breasts. To perform an intraindividual comparison of MGD between FFDM, DBT, a combination protocol using both FFDM and DBT (combined FFDM-DBT), and CEM, in patients undergoing breast cancer screening. This retrospective study included 389 women (median age, 57.
View Article and Find Full Text PDFRadiol Artif Intell
January 2025
Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104.
Purpose To evaluate the change in DBT-AI (digital breast tomosynthesis-artificial intelligence) case scores over sequential screens. Materials and Methods This retrospective review included 21,108 female patients (mean age, 58.1 ± [SD] 11.
View Article and Find Full Text PDFMed Image Anal
January 2025
Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Eur Radiol
January 2025
Radboud University Medical Center, IQ Health science department, Nijmegen, The Netherlands.
Objectives: It is uncertain what the effects of introducing digital breast tomosynthesis (DBT) in the Dutch breast cancer screening programme would be on detection, recall, and interval cancers (ICs), while reading times are expected to increase. Therefore, an investigation into the efficiency and cost-effectiveness of DBT screening while optimising reading is required.
Materials And Methods: The Screening Tomosynthesis trial with advanced REAding Methods (STREAM) aims to include 17,275 women (age 50-72 years) eligible for breast cancer screening in the Netherlands for two biennial DBT screening rounds to determine the short-, medium-, and long-term effects and acceptability of DBT screening and identify an optimised strategy for reading DBT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!