Mammalian DNA polymerase alpha: a replication-competent holoenzyme form from calf thymus.

Philos Trans R Soc Lond B Biol Sci

Department of Pharmacology and Biochemistry, University of Zürich-Irchel, Switzerland.

Published: December 1987

Calf thymus DNA polymerase alpha, like the replication-specific DNA polymerase III holoenzyme of Escherichia coli, can be isolated as a distinct complex. A specific multiprotein form of the polymerase alpha, a form designated replication-competent (RC) holoenzyme, consists of a complex of a polymerase-primase core and at least six other polypeptides. The RC holoenzyme can efficiently replicate several naturally occurring templates, including the genomic DNA of the porcine circovirus (PCV). The DNA of this virion consists of a single-stranded circle with a defined replication origin, and its replication requires the cellular DNA replication machinery. It might therefore provide an invaluable opportunity to investigate chromosomal replication mechanisms, analogous to the way that studies on E. coli bacteriophage DNA replication elucidated host DNA replication mechanisms. Calf RC holoenzyme alpha selectively initiates PCV DNA replication in vitro at a site that possibly represents a consensus sequence of cellular DNA replication origins. The cell-free PCV replication system will be exploited for the in vitro dissection and reconstitution of the RC holoenzyme and the functional analysis of its component polypeptides.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rstb.1987.0069DOI Listing

Publication Analysis

Top Keywords

dna replication
20
dna polymerase
12
polymerase alpha
12
dna
9
replication
9
replication-competent holoenzyme
8
calf thymus
8
pcv dna
8
cellular dna
8
replication mechanisms
8

Similar Publications

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Knocking Down in Colorectal Cancer: Implications for Apoptosis and Cell Cycle Arrest via the p53 Signaling Pathway.

Discov Med

January 2025

Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 154000 Jiamusi, Heilongjiang, China.

Background: Preventing the progression and recurrence of colorectal cancer (CRC) remains a clinical challenge due to its heterogeneity and drug resistance. This underscores the need to discover new targets and elucidate their cancer-promoting mechanisms. This study analyzed the cancer-promoting mechanisms of tryptophanyl-tRNA synthetase 1 () in CRC.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.

View Article and Find Full Text PDF

Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!