The oleaginous yeast R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba () cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating -5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25-48 °C) and pH (6.5-8.4). The present study deals with the immobilization of R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (K and V). Ionic supports improved the enzyme-substrate affinity; however, it was not an effective strategy to increase the R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151709 | PMC |
http://dx.doi.org/10.3390/molecules22101508 | DOI Listing |
Molecules
September 2017
Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.
The oleaginous yeast R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba () cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating -5,8,11,15,17-eicosapentaenoic acid from sardine oil.
View Article and Find Full Text PDFMicrob Cell Fact
June 2015
Instituto Nanocell and Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Pampulha, Caixa Postal 486, Belo Horizonte, MG, 31270-901, Brazil.
Background: Biodiesel industry wastes were evaluated as supplements for lipase production by Moniliella spathulata R25L270, which is newly identified yeast with great lipolytic potential. Macaúba cake (MC), used for the first time in this work as inducer to produce lipases, and residual oil (RO) were mixed to maximise enzyme production. The lipase secreted was biochemically characterised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!