Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil.

Molecules

Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.

Published: September 2017

The oleaginous yeast R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba () cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating -5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25-48 °C) and pH (6.5-8.4). The present study deals with the immobilization of R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (K and V). Ionic supports improved the enzyme-substrate affinity; however, it was not an effective strategy to increase the R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151709PMC
http://dx.doi.org/10.3390/molecules22101508DOI Listing

Publication Analysis

Top Keywords

r25l270 lipase
16
sardine oil
16
hydrophobic covalent
8
ionic supports
8
omega-3 fatty
8
fatty acids
8
lipase stability
8
octyl-sepharose derivative
8
lipase
7
r25l270
5

Similar Publications

Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil.

Molecules

September 2017

Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de la Alimentación CIAL (CSIC-UAM), Campus de la Universidad Autónoma de Madrid, Nicolás Cabrera 9, 28049 Madrid, Spain.

The oleaginous yeast R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba () cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating -5,8,11,15,17-eicosapentaenoic acid from sardine oil.

View Article and Find Full Text PDF

Macaúba (Acrocomia aculeata) cake from biodiesel processing: a low-cost substrate to produce lipases from Moniliella spathulata R25L270 with potential application in the oleochemical industry.

Microb Cell Fact

June 2015

Instituto Nanocell and Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Pampulha, Caixa Postal 486, Belo Horizonte, MG, 31270-901, Brazil.

Background: Biodiesel industry wastes were evaluated as supplements for lipase production by Moniliella spathulata R25L270, which is newly identified yeast with great lipolytic potential. Macaúba cake (MC), used for the first time in this work as inducer to produce lipases, and residual oil (RO) were mixed to maximise enzyme production. The lipase secreted was biochemically characterised.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!