The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5677442PMC
http://dx.doi.org/10.3390/s17102196DOI Listing

Publication Analysis

Top Keywords

termite mounds
16
hyperspectral imagery
12
pre-existing termite
8
mounds
6
image
5
automatic detection
4
detection pre-existing
4
termite
4
mounds uas
4
uas hyperspectral
4

Similar Publications

Globally, urban expansion has led to habitat fragmentation and altered resource availability, thus posing significant challenges for wildlife. The Chinese pangolin () is a critically endangered species experiencing population decline due to illegal trade and habitat degradation. This study analyzed variables affecting habitat occupancy of Chinese pangolins using a single-season occupancy model across 134 study grids (600 m × 600 m) in peri-urban areas of Dharan Sub-Metropolitan City, eastern Nepal.

View Article and Find Full Text PDF

Prevalence of human visceral leishmaniasis and its risk factors in Eastern Africa: a systematic review and meta-analysis.

Front Public Health

December 2024

Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.

Introduction: Visceral Leishmaniasis, also known as kala-azar, is a potentially fatal, neglected tropical disease caused by the protozoan parasite and transmitted through infected sandflies. It is one of the major global public health problems and contributors to economic crisis among people. Though different studies investigated human visceral leishmaniasis in Eastern Africa, the findings were inconsistent and inconclusive enough, and there is no representative data on this devastating public health concern.

View Article and Find Full Text PDF

Retraction notice to "Hazardous effects of road-side soils on the redox and cholinesterasic homeostasis of mound-building termite (Cornitermes cumulans)" [STOTEN 815 (2022) 152841].

Sci Total Environ

December 2024

Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urataí Campus, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution, Federal University of Goiás, GO, Brazil; Post-graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.

View Article and Find Full Text PDF

Background: The fungus comb is a unique structure inside termites' nests that facilitates the growth of sp. as a nutrient source for the termites. It is known to possess immunomodulatory properties that boost the immune system.

View Article and Find Full Text PDF

Termites are important ecosystem engineers and play key roles in modulating microbial communities within and outside their mounds. Microbial diversity within termite mounds is generally lower than surrounding soils, due to termite-associated antimicrobial compounds and active sanitary behaviours. Microbial symbionts of termites can also influence the microbial landscape, by inhibiting or out-competing other microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!