The spent cathode carbon (SCC) from aluminum electrolysis was subjected to caustic leaching to investigate the different effects of ultrasound-assisted and traditional methods on element fluorine (F) leaching rate and leaching residue carbon content. Sodium hydroxide (NaOH) dissolved in deionized water was used as the reaction system. Through single-factor experiments and a comparison of two leaching techniques, the optimum F leaching rate and residue carbon content for ultrasound-assisted leaching process were obtained at a temperature of 70°C, residue time of 40min, initial mass ratio of alkali to SCC (initial alkali-to-material ratio) of 0.6, liquid-to-solid ratio of 10mL/g, and ultrasonic power of 400W, respectively. Under the optimal conditions, the leaching residue carbon content was 94.72%, 2.19% larger than the carbon content of traditional leaching residue. Leaching wastewater was treated with calcium chloride (CaCl) and bleaching powder and the treated wastewater was recycled caustic solution. All in all, benefiting from advantage of the ultrasonication effects, ultrasound-assisted caustic leaching on spent cathode carbon had 55.6% shorter residue time than the traditional process with a higher impurity removal rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2017.06.024DOI Listing

Publication Analysis

Top Keywords

carbon content
16
caustic leaching
12
spent cathode
12
cathode carbon
12
leaching residue
12
residue carbon
12
leaching
11
ultrasound-assisted traditional
8
leaching spent
8
carbon scc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!