Background And Purpose: Heat-sensitive transient receptor potential vanilloid (TRPV) channels are expressed in various epithelial tissues regulating, among else, barrier functions. Their expression is well established in the distal nephron; however, we have no data about their presence in podocytes. As podocytes are indispensable in the formation of the glomerular filtration barrier, we investigated the presence and function of Ca -permeable TRPV1-4 channels in human podocyte cultures.
Experimental Approach: Expression of TRPV1-4 channels was investigated at protein (immunocytochemistry, Western blot) and mRNA (Q-PCR) level in a conditionally immortalized human podocyte cell line. Channel function was assessed by measuring intracellular Ca concentration using Flou-4 Ca -indicator dye and patch clamp electrophysiology upon applying various activators and inhibitors.
Key Results: Thermosensitive TRP channels were expressed in podocytes. The TRPV1-specific agonists capsaicin and resiniferatoxin did not affect the intracellular Ca concentration. Cannabidiol, an activator of TRPV2 and TRPV4 channels, induced moderate Ca -influxes, inhibited by both tranilast and HC067047, blockers of TRPV2 and TRPV4 channels respectively. The TRPV4-specific agonists GSK1016790A and 4α-phorbol 12,13-didecanoate induced robust Ca -signals which were abolished by HC067047. Non-specific agonists of TRPV3 channels induced marked Ca transients. However, TRPV3 channel blockers, ruthenium red and isopentenyl diphosphate only partly inhibited the responses and TRPV3 silencing was ineffective suggesting remarkable off-target effects of the compounds.
Conclusion And Implications: Our results indicate the functional presence of TRPV4 and other thermosensitive TRPV channels in human podocytes and raise the possibility of their involvement in the regulation of glomerular filtration barrier.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715976 | PMC |
http://dx.doi.org/10.1111/bph.14052 | DOI Listing |
Insects
January 2025
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Mucosal Diseases, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated -induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan; Course of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan. Electronic address:
There are a lot of temperature-sensitive proteins including transient receptor potential (TRP) channels. Some TRP channels are temperature receptors having specific activation temperatures in vitro that are within the physiological temperature range. Mice deficient in specific TRP channels show abnormal thermal behaviors, but the role of TRP channels in these behaviors is not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!