Astragalus mongholicus Bunge (Fabaceae) is an important plant source of the herbal drug known as Radix Astragali, which is used worldwide as a medicinal ingredient and a component of food supplement. Russian Federation, Mongolia, Kazakhstan, and China are the main natural distribution areas of A. mongholicus in the world. However, the quality of medicinal plant varies among different locations. As for A. mongholicus, limited literature focused on its biodiversity mechanism. Here, we combined the chemometric analysis of chemical components with genetic variation, as well as climatic and edaphic traits, to reveal the biodiversity mechanism of A. mongholicus. Results showed that the detected chemical, genetic and climatic traits comprehensively contributed to the quality diversity of A. mongholicus. The eight main chemical components, as well as the inorganic elements of P, B and Na were all significant chemical factors. The precipitation and sunshine duration were the main distinguishing climatic factors. The inorganic elements As, Mn, P, Se and Pb were the distinguishing edaphic factors. The systematic method was firstly established for this medicinal plant in order to illustrate the formation of diversity in terms of quality, and provide scientific evidence for geographic indications and climatic adaptation in production and in the clinical application of herbal medicinal plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612462 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184791 | PLOS |
J Am Soc Mass Spectrom
January 2025
Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka.
Background: Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!