Purpose: To investigate the clinical characteristics and genetic basis of inherited retinal degeneration (IRD) in six unrelated pedigrees from Mexico.
Methods: A complete ophthalmic evaluation including measurement of visual acuities, Goldman kinetic or Humphrey dynamic perimetry, Amsler test, fundus photography, and color vision testing was performed. Family history and blood samples were collected from available family members. DNA from members of two pedigrees was examined for known mutations using the APEX ARRP genotyping microarray and one pedigree using the APEX LCA genotyping microarray. The remaining three pedigrees were analyzed using a custom-designed targeted capture array covering the exons of 233 known retinal degeneration genes. Sequencing was performed on Illumina HiSeq. Reads were mapped against hg19, and variants were annotated using GATK and filtered by exomeSuite. Segregation and ethnicity-matched control sample analyses were performed by dideoxy sequencing.
Results: Six pedigrees with IRD were analyzed. Nine rare or novel, potentially pathogenic variants segregating with the phenotype were detected in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes. Among these, six were known mutations while the remaining three changes in USH2A, RPE65, and FAM161A genes have not been previously reported to be associated with IRD. Analysis of 100 ethnicity-matched controls did not detect the presence of these three novel variants indicating, these are rare variants in the Mexican population.
Conclusions: Screening patients diagnosed with IRD from Mexico identified six known mutations and three rare or novel potentially damaging variants in IMPDH1, USH2A, RPE65, ABCA4, and FAM161A genes that segregated with disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143363 | PMC |
http://dx.doi.org/10.1080/13816810.2017.1373830 | DOI Listing |
Expert Opin Drug Saf
January 2025
Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Background: Faricimab is predominantlyprescribed for conditions such as age-related macular degeneration (AMD),diabetic macular edema (DME), and macular edema related to retinal veinocclusion (RVO-ME). Currently, a notable absence of large-scale, real-worldstudies focusing on the adverse reactions of faricimab exists.
Methods: Thisstudy assesses the side effects of faricimab by analyzing reports of adverseevents (AEs) from the FDA's AEReporting System (FAERS) database.
Mol Ther
January 2025
Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, UK. Electronic address:
Optogenetic therapy is a promising vision restoration method where light sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like pre-clinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent.
View Article and Find Full Text PDFMol Ther
January 2025
Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, BS8 1TD, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, EC1V 2PD, UK. Electronic address:
Progress for ocular AAV gene therapy has been hindered by AAV-induced inflammation, limiting dose escalation and long-term efficacy. Broadly, the extent of inflammatory responses alters with age and sex, yet these factors are poorly represented in pre-clinical development of ocular AAV gene therapies. Here, we combined clinical imaging, flow cytometry and bulk-sequencing of sorted microglia to interrogate the longitudinal inflammatory response following intravitreal delivery of AAV2 in young (3-month), middle aged (9-month) and old (18-month) Cx3cr1-creER:R26tdTomato+/- mice of both sexes.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
January 2025
Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea. Electronic address:
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders.
View Article and Find Full Text PDFBMJ Open Ophthalmol
January 2025
Ophthalmology & Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
Dual inhibition of the angiopoietin (Ang)/Tie and vascular endothelial growth factor (VEGF) signalling pathways in patients with retinal diseases, such as neovascular age-related macular degeneration (nAMD) and diabetic macular oedema (DME), may induce greater vascular stability and contribute to increased treatment efficacy and durability compared with treatments that only target the VEGF pathway. Faricimab, a bispecific intravitreal agent that inhibits both VEGF and Ang-2, is the first injectable ophthalmic drug to achieve treatment intervals of up to 16 weeks in Phase 3 studies for nAMD and DME while exhibiting improvements in visual acuity and retinal thickness. Data from real-world studies have supported the safety, visual and anatomic benefits and durability of faricimab, even in patients who were previously treated with other intravitreal agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!