AI Article Synopsis

  • LGR4, LGR5, and LGR6 are G-protein-coupled receptors involved in Wnt signaling, but only LGR6 is identified as an epithelial stem cell marker in squamous cell carcinoma (SCC).
  • By using advanced mouse models, researchers found that LGR6 is linked to increased stem cell characteristics and higher frequencies in advanced SCCs, while downregulation of LGR6 leads to heightened skin cell proliferation.
  • Mice lacking LGR6 show a greater risk for SCC development, suggesting a compensatory role of LGR5, which parallels findings in humans with Wnt pathway gene mutations that increase SCC susceptibility.

Article Abstract

The G-protein-coupled receptors LGR4, LGR5 and LGR6 are Wnt signaling mediators, but their functions in squamous cell carcinoma (SCC) are unclear. Using lineage tracing in Lgr5-EGFP-CreERT2/Rosa26-Tomato and Lgr6-EGFP-CreERT2/Rosa26-Tomato reporter mice, we demonstrate that Lgr6, but not Lgr5, acts as an epithelial stem cell marker in SCCs in vivo. We identify, by single-molecule in situ hybridization and cell sorting, rare cells positive for Lgr6 expression in immortalized keratinocytes and show that their frequency increases in advanced SCCs. Lgr6 expression is enriched in cells with stem cell characteristics, and Lgr6 downregulation in vivo causes increased epidermal proliferation with expanded lineage tracing from epidermal stem cells positive for Lgr6 expression. Surprisingly, mice with germline knockout of Lgr6 are predisposed to SCC development, through a mechanism that includes compensatory upregulation of Lgr5. These data provide a model for human patients with germline loss-of-function mutations in Wnt pathway genes, including RSPO1 or LGR4, who show increased susceptibility to squamous tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662105PMC
http://dx.doi.org/10.1038/ng.3957DOI Listing

Publication Analysis

Top Keywords

stem cell
12
lgr6 expression
12
lgr6
8
cell marker
8
squamous cell
8
cell carcinoma
8
lineage tracing
8
cells positive
8
positive lgr6
8
cell
6

Similar Publications

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions.

Adv Sci (Weinh)

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China.

Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!