In multiple sclerosis, the pathological interaction between autoreactive Th cells and mononuclear phagocytes in the CNS drives initiation and maintenance of chronic neuroinflammation. Here, we found that intrathecal transplantation of neural stem/precursor cells (NPCs) in mice with experimental autoimmune encephalomyelitis (EAE) impairs the accumulation of inflammatory monocyte-derived cells (MCs) in the CNS, leading to improved clinical outcome. Secretion of IL-23, IL-1, and TNF-α, the cytokines required for terminal differentiation of Th cells, decreased in the CNS of NPC-treated mice, consequently inhibiting the induction of GM-CSF-producing pathogenic Th cells. In vivo and in vitro transcriptome analyses showed that NPC-secreted factors inhibit MC differentiation and activation, favoring the switch toward an antiinflammatory phenotype. Tgfb2-/- NPCs transplanted into EAE mice were ineffective in impairing MC accumulation within the CNS and failed to drive clinical improvement. Moreover, intrathecal delivery of TGF-β2 during the effector phase of EAE ameliorated disease severity. Taken together, these observations identify TGF-β2 as the crucial mediator of NPC immunomodulation. This study provides evidence that intrathecally transplanted NPCs interfere with the CNS-restricted inflammation of EAE by reprogramming infiltrating MCs into antiinflammatory myeloid cells via secretion of TGF-β2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663358 | PMC |
http://dx.doi.org/10.1172/JCI92387 | DOI Listing |
Alzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Columbia University, New York, NY, USA.
Background: Alzheimer's disease (AD) is the most common form of dementia. The neurotropic virus herpes simplex virus 1 (HSV1) has been linked to the pathogenesis of AD. While ∼65% of the US population is infected with HSV1, in the majority of cases the virus is dormant and infected individuals are asymptomatic.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Aging microglia accumulate lipid droplets (LDs), secrete pro-inflammatory cytokines, and are defective in phagocytosis. The E4 allele of Apolipoprotein E (APOE) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD) and is associated with increased neuroinflammation and LD accumulation. Here, we aimed to determine if the effects of aging and the E4 allele are synergistic in causing the accumulation of LDs seen in LOAD.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.
View Article and Find Full Text PDFAnnu Rev Immunol
January 2025
Department of Immunology, University of Toronto, Toronto, Ontario, Canada; email:
Prosurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!