Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two probable causes of variability in the Raman spectrum of unpolished pyrite are well recognized, in principle, but not always in practice, namely: (1) downshifting of band positions due to laser heating; and (2) variations in the ratios of band intensities due to crystallographic orientation of the sample with respect to the laser's dominant polarization plane. The aims of this paper are to determine whether these variations can be used to acquire additional information about pyrites. Here, using laser Raman microprobe analysis of natural, unpolished pyrite samples, we investigate the magnitude of downshifting of band positions associated with laser heating of different sizes of pyrite grains. We demonstrate that the magnitude of this effect can be large (up to ∼10 cm), negatively proportional to grain size, of greater magnitude than the effect typically attributable to natural intersample differences in trace element (TE) solid solution, and of similar magnitude among bands. Through Raman analysis of naturally occurring faces on pyrite samples at various angles of rotation, we also demonstrate that the three most common faces on pyrite can be distinguished by the ratio of the intensities of the dominant bands. We conclude that for unpolished samples, laser Raman microprobe analysis is most effective as a means of identifying pyrite, and the presence of solid solution therein, when laser power is low enough to avoid substantial heating. Once pyrite has been identified, higher laser powers can be used to produce spectra whose ratios of band intensities indicate the face or crystallographic plane being irradiated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702817736516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!