Increasing evidence suggests selenium nanoparticles (Se NPs) as potential cancer therapeutic agents and emerging drug delivery carriers, yet, the molecular mechanism of their anticancer activity still remains unclear. Recent studies indicate thioredoxin reductase (TrxR), a selenoenzyme, as a promising target for anticancer therapy. The present study explored the TrxR inhibition efficacy of Se NPs as a plausible factor impeding tumor growth. Hyaluronic acid (HA)-functionalized selenopolymeric nanocarriers (Se@CMHA NPs) were designed wielding chemotherapeutic potential for target specific Doxorubicin (DOX) delivery. Se@CMHA nanocarriers are thoroughly characterized asserting their chemical and physical integrity and possess prolonged stability. DOX-loaded selenopolymeric nanocarriers (Se@CMHA-DOX NPs) exhibited enhanced cytotoxic potential toward human cancer cells compared to free DOX in an equivalent concentration eliciting its selectivity. In first-of-its-kind findings, selenium as Se NPs in these polymeric carriers progressively inhibit TrxR activity, further augmenting the anticancer efficacy of DOX through a synergistic interplay between DOX and Se NPs. Detailed molecular studies on MCF7 cells also established that upon exposure to Se@CMHA-DOX NPs, MCF7 cells endure G2/M cell cycle arrest and p53-mediated caspase-independent apoptosis. To gauge the relevance of the developed nanosystem in in vivo settings, three-dimensional tumor sphere model mimicking the overall tumor environment was also performed, and the results clearly depict the effectiveness of our nanocarriers in reducing tumor activity. These findings are reminiscent of the fact that our Se@CMHA-DOX NPs could be a viable modality for effective cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b07056 | DOI Listing |
ACS Appl Mater Interfaces
October 2017
Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India.
Increasing evidence suggests selenium nanoparticles (Se NPs) as potential cancer therapeutic agents and emerging drug delivery carriers, yet, the molecular mechanism of their anticancer activity still remains unclear. Recent studies indicate thioredoxin reductase (TrxR), a selenoenzyme, as a promising target for anticancer therapy. The present study explored the TrxR inhibition efficacy of Se NPs as a plausible factor impeding tumor growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!