Increased intercellular reactive oxygen species (ROS) levels are the major cause of podocyte injury with proteinuria. Caveolin‑1 (CAV‑1) is an essential protein component of caveolae. CAV‑1 participates in signal transduction and endocytic trafficking. Recent research has indicated that CAV‑1 regulates oxidative stress‑induced pathways. The present study used hydrogen peroxide (H2O2) at nontoxic concentrations to elevate the level of ROS in E11 podocytes. Treatment with 500 and 1,000 µM H2O2 for 1 h significantly reduced CAV‑1 expression levels. Simultaneously, the treatment significantly reduced the expression of the antioxidant enzymes glutamine‑cysteine ligase catalytic subunit, superoxide dismutase 2 and catalase. To determine the role of CAV‑1 in mediating oxidative stress, E11 podocytes were administered antenapedia‑CAV‑1 (AP‑CAV‑1) peptide for 48 h. The AP‑CAV‑1 treatment enhanced CAV‑1 expression and inhibited cyclophilin A expression, thus reducing ROS‑induced inflammation. Moreover, CAV‑1 protected against H2O2‑induced oxidative stress responses by enhancing the expression of antioxidant enzymes. Furthermore, CAV‑1 attenuated H2O2‑induced changes oxidative phosphorylation, and the expression of optic atrophy 1 and translocase of the inner membrane 23, as well as preserving mitochondrial function. CAV‑1 treatment significantly suppressed apoptosis, as indicated by a higher B‑cell lymphoma 2/BCL2‑associated X protein ratio. Therefore, enhancing the expression of CAV‑1 may be an important therapeutic consideration in treating podocyte injury.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.7497DOI Listing

Publication Analysis

Top Keywords

e11 podocytes
12
cav‑1
10
mitochondrial function
8
podocyte injury
8
cav‑1 expression
8
expression antioxidant
8
antioxidant enzymes
8
oxidative stress
8
enhancing expression
8
expression
7

Similar Publications

Background: Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and β-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function.

View Article and Find Full Text PDF

Protein tyrosine phosphatase 1B is a regulator of alpha-actinin4 in the glomerular podocyte.

Biochim Biophys Acta Mol Cell Res

January 2024

Department of Nutrition, University of California Davis, Davis, CA, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA. Electronic address:

Glomerular podocytes are instrumental for the barrier function of the kidney, and podocyte injury contributes to proteinuria and the deterioration of renal function. Protein tyrosine phosphatase 1B (PTP1B) is an established metabolic regulator, and the inactivation of this phosphatase mitigates podocyte injury. However, there is a paucity of data regarding the substrates that mediate PTP1B actions in podocytes.

View Article and Find Full Text PDF

Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN.

View Article and Find Full Text PDF

Loss of Calponin 2 causes age-progressive proteinuria in mice.

Physiol Rep

September 2022

Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.

Proteinuria is a major manifestation of kidney disease, reflecting injuries of glomerular podocytes. Actin cytoskeleton plays a pivotal role in stabilizing the foot processes of podocytes against the hydrostatic pressure of filtration. Calponin is an actin associated protein that regulates mechanical tension-related cytoskeleton functions and its role in podocytes has not been established.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a significant complication of diabetes and the leading cause of end-stage renal disease. Hyperglycemia-induced dysfunction of the glomerular podocytes is a major contributor to the deterioration of renal function in DN. Previously, we demonstrated that podocyte-specific disruption of the Src homology phosphatase 2 (Shp2) ameliorated lipopolysaccharide-induced renal injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!