Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research studies the effect of using a grid-like pattern as a collector on increasing the pore size of the electrospun gelatin/cellulose acetate/elastin scaffolds. The morphological study showed an enlargement in pore size and a decline in fiber diameter in comparison with the scaffold fabricated using conventional flat sheet collectors. The use of the pattern increased the swelling ratio and degradation rate of the scaffold. Investigating the tensile properties of scaffolds revealed that the patterned collector increased the elongation at break up to 145%. In vitro experiments revealed the patterned scaffold as a good substrate for attachment and proliferation of fibroblast cells. Overall, our results indicated that the patterned scaffold of gelatin/cellulose acetate/elastin could provide a better microenvironment for fibroblast cells compared to the conventional scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 370-376, 2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.36246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!