With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609467 | PMC |
http://dx.doi.org/10.1016/j.gendis.2017.04.001 | DOI Listing |
Cardiovasc Toxicol
January 2025
RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
The rapid development and deployment of mRNA and non-mRNA COVID-19 vaccines have played a pivotal role in mitigating the global pandemic. Despite their success in reducing severe disease outcomes, emerging concerns about cardiovascular complications have raised questions regarding their safety. This systematic review critically evaluates the evidence on the cardiovascular effects of COVID-19 vaccines, assessing both their protective and adverse impacts, while considering the challenges posed by the limited availability of randomized controlled trial (RCT) data on these rare adverse events.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Genetics, Faculty of Veterinary Medicine, Yozgat Bozok University, Yozgat, Türkiye.
Background: Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain.
View Article and Find Full Text PDFAm J Med Sci
January 2025
Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
Background: In late 2019, the World Health Organization declared Coronavirus disease 2019 a global emergency. Since then, many vaccines have been developed to combat the pandemic. Millions of people have received one of the approved COVID-19 vaccines; unfortunately, some adverse events also have been recorded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!