Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586241PMC
http://dx.doi.org/10.1002/2016MS000778DOI Listing

Publication Analysis

Top Keywords

stratocumulus clouds
16
large eddy
8
eddy simulations
8
layer cloud
8
les stratocumulus
8
wide range
8
weno numerics
8
sgs closure
8
consistently produces
8
sgs fluxes
8

Similar Publications

Satellite observations from the Clouds and the Earth's Radiant Energy System show that Earth's energy imbalance has doubled from 0.5 ± 0.2 Wm during the first 10 years of this century to 1.

View Article and Find Full Text PDF

Marine stratocumulus clouds are the "global reflectors," sharply contrasting with the underlying dark ocean surface and exerting a net cooling on Earth's climate. The magnitude of this cooling remains uncertain in part owing to the averaged representation of microphysical processes, such as the droplet-to-drizzle transition in global climate models (GCMs). Current GCMs parameterize cloud droplet size distributions as broad, cloud-averaged gammas.

View Article and Find Full Text PDF

Excessive precipitation over the southeastern tropical Pacific is a major common bias that persists through generations of global climate models. While recent studies suggest an overly warm Southern Ocean as the cause, models disagree on the quantitative importance of this remote mechanism in light of ocean circulation feedback. Here, using a multimodel experiment in which the Southern Ocean is radiatively cooled, we show a teleconnection from the Southern Ocean to the tropical Pacific that is mediated by a shortwave subtropical cloud feedback.

View Article and Find Full Text PDF

An approach to drive Lagrangian large eddy simulation (LES) of boundary layer clouds with reanalysis data is presented and evaluated using satellite (Spinning Enhanced Visible and Infrared Imager, SEVIRI) and aircraft (Cloud-Aerosol-Radiation Interactions and Forcing, CLARIFY) measurements. The simulations follow trajectories of the boundary layer flow. They track the formation and evolution of a pocket of open cells (POC) underneath a biomass burning aerosol layer in the free troposphere.

View Article and Find Full Text PDF

By combining measurements from MODIS and the CloudSat radar, we develop a parameterization scheme to quantify the combined microphysical controls by liquid water path (LWP) and cloud droplet number concentration (CDNC) of the probability of precipitation (PoP) in marine low cloud over tropical oceans. We demonstrate that the spatial-temporal variation of grid-mean in-cloud can be largely explained by the variation of the joint probability density function of LWP and CDNC in the phase space specified by the bivariate PoP (LWP and CDNC) function. Through a series of sensitivity tests guided by this understanding, we find that in the Southeastern Pacific and Atlantic the stratocumulus to cumulus transition of the is mainly due to the variation of CDNC while the annual cycle is mainly due to the variation of LWP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!