In the deuterostomes and ecdysozoans that have been studied (e.g. chordates and insects), neural fate specification relies on signaling from surrounding cells. However, very little is known about mechanisms of neural specification in the third major bilaterian clade, spiralians. Using blastomere isolation in the annelid Capitella teleta, a spiralian, we studied to what extent extrinsic versus intrinsic signals are involved in early neural specification of the brain and ventral nerve cord. For the first time in any bilaterian, we found that brain neural ectoderm is autonomously specified. This occurs in the daughters of first-quartet micromeres, which also generate anterior neural ectoderm in other spiralians. In contrast, isolation of the animal cap, including the 2d micromere, which makes the trunk ectoderm and ventral nerve cord, blocked ventral nerve cord formation. When the animal cap was isolated with the 2D macromere, the resulting partial larvae had a ventral nerve cord. These data suggest that extrinsic signals from second-quartet macromeres or their daughters, which form mesoderm and endoderm, are required for nerve cord specification in C. teleta and that the 2D macromere or its daughters are sufficient to provide the inductive signal. We propose that autonomous specification of anterior neural ectoderm evolved in spiralians in order to enable them to quickly respond to environmental cues encountered by swimming larvae in the water column. In contrast, a variety of signaling pathways could have been co-opted to conditionally specify the nerve cord. This flexibility of nerve cord development may be linked to the large diversity of trunk nervous systems present in Spiralia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2017.09.022 | DOI Listing |
Front Immunol
December 2024
Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes.
View Article and Find Full Text PDFCureus
November 2024
Neurosurgery, Erciyes University Faculty of Medicine, Kayseri, TUR.
Intramedullary schwannomas are a type of benign spinal cord tumor that originates from the Schwann cells of the nerve sheath. They are relatively rare and typically occur within the spinal cord itself, rather than in the surrounding tissue. Treatment options for cervical intramedullary schwannomas include surgical removal of the tumor, radiation therapy, and observation.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Neuroscience Division, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil.
Spinal cord injury (SCI) can cause significant motor, sensory, and autonomic dysfunction by disrupting neural connections. As a result, it is a global health challenge that requires innovative interventions to improve outcomes. This review assesses the wide-ranging impacts of SCI and focuses on the laparoscopic implantation of neuroprosthesis (LION) as an emerging and promising rehabilitation technique.
View Article and Find Full Text PDFWorld J Stem Cells
December 2024
Department of Orthopedics, Children's Hospital of Fudan University & National Children's Medical Center, Shanghai 201102, China.
Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".
Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.
Pain Rep
February 2025
Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Introduction: Pain phenomenology in patients with fibromyalgia syndrome (FMS) shows considerable overlap with neuropathic pain. Altered neural processing leading to symptoms of neuropathic pain can occur at the level of the spinal cord, and 1 potential mechanism is spinal disinhibition. A biomarker of spinal disinhibition is impaired H-reflex rate-dependent depression (HRDD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!