Satellite cells are skeletal-muscle-specific stem cells that are activated by injury to proliferate, differentiate, and fuse to enable repair. SOX7, a member of the SRY-related HMG-box family of transcription factors is expressed in quiescent satellite cells. To elucidate SOX7 function in skeletal muscle, we knocked down Sox7 expression in embryonic stem cells and primary myoblasts and generated a conditional knockout mouse in which Sox7 is excised in PAX3 cells. Loss of Sox7 in embryonic stem cells reduced Pax3 and Pax7 expression. In vivo, conditional knockdown of Sox7 reduced the satellite cell population from birth, reduced myofiber caliber, and impaired regeneration after acute injury. Although Sox7-deficient primary myoblasts differentiated normally, impaired myoblast fusion and increased sensitivity to apoptosis in culture and in vivo were observed. Taken together, these results indicate that SOX7 is dispensable for myogenesis but is necessary to promote satellite cell development and survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639291 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2017.08.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!