Silver chloride nanoparticles were synthesized from the cell-free culture supernatant of Streptomyces strain using green synthesis approach with good yield. The nanoparticles were characterized by UV-Vis, IR, SEM, AFM and XRD techniques. These nanoparticles exhibited broad spectrum of antibacterial activity towards Methicillin-resistant Staphylococcus aureus, Methicillin sensitive S. aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia at ≤ 2 μg/ml minimal inhibitory concentrations. In vivo bioassay in nanoparticles treated zebrafish embryos exhibited 16 μg/ml dose as maximal cardiac safety concentration and further increases in concentration revealed adverse effects such as pericardial bulging, mouth protrudation, hemorrhage and yolk sac elongation. The less toxicity of nanoparticles treated embryos in terms of cardiac assessment and lethality analysis was observed. The dose below 5 μg/ml is concluded as an in vitro and in vivo therapeutic dose. The properties of this biosynthesized nanoparticle suggest a path towards developing antibiotic nanoparticles that are likely to avoid development of multidrug resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2017.07.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!