Background: The advent of regional multidisciplinary intestinal rehabilitation programs has been associated with improved survival in pediatric intestinal failure. Yet, the optimal timing of referral for intestinal rehabilitation remains unknown. We hypothesized that the degree of intestinal failure-associated liver disease (IFALD) at initiation of intestinal rehabilitation would be associated with overall outcome.

Methods: The multicenter, retrospective Pediatric Intestinal Failure Consortium (PIFCon) database was used to identify all subjects with baseline bilirubin data. Conjugated bilirubin (CBili) was used as a marker for IFALD, and we stratified baseline bilirubin values as CBili<2 mg/dL, CBili 2-4 mg/dL, and CBili>4 mg/dL. The association between baseline CBili and mortality was examined using Cox proportional hazards regression.

Results: Of 272 subjects in the database, 191 (70%) children had baseline bilirubin data collected. 38% and 28% of patients had CBili >4 mg/dL and CBili <2 mg/dL, respectively, at baseline. All-cause mortality was 23%. On univariate analysis, mortality was associated with CBili 2-4 mg/dL, CBili >4 mg/dL, prematurity, race, and small bowel atresia. On regression analysis controlling for age, prematurity, and diagnosis, the risk of mortality was increased by 3-fold for baseline CBili 2-4 mg/dL (HR 3.25 [1.07-9.92], p=0.04) and 4-fold for baseline CBili >4 mg/dL (HR 4.24 [1.51-11.92], p=0.006). On secondary analysis, CBili >4 mg/dL at baseline was associated with a lower chance of attaining enteral autonomy.

Conclusion: In children with intestinal failure treated at intestinal rehabilitation programs, more advanced IFALD at referral is associated with increased mortality and decreased prospect of attaining enteral autonomy. Early referral of children with intestinal failure to intestinal rehabilitation programs should be strongly encouraged.

Level Of Evidence: Treatment Study, Level III.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837922PMC
http://dx.doi.org/10.1016/j.jpedsurg.2017.08.049DOI Listing

Publication Analysis

Top Keywords

intestinal rehabilitation
24
intestinal failure
20
cbili mg/dl
16
intestinal
12
pediatric intestinal
12
rehabilitation programs
12
baseline bilirubin
12
baseline cbili
12
intestinal failure-associated
8
failure-associated liver
8

Similar Publications

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Mol Neurobiol

January 2025

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.

View Article and Find Full Text PDF

Improving Spatial Transcriptomics with Membrane-Based Boundary Definition and Enhanced Single-Cell Resolution.

Small Methods

January 2025

Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China.

Accurately defining cell boundaries for spatial transcriptomics is technically challenging. The current major approaches are nuclear staining or mathematical inference, which either exclude the cytoplasm or determine a hypothetical boundary. Here, a new method is introduced for defining cell boundaries: labeling cell membranes using genetically coded fluorescent proteins, which allows precise indexing of sequencing spots and transcripts within cells on sections.

View Article and Find Full Text PDF

extracellular vesicles alleviate alcohol-induced liver injury in mice by regulating gut microbiota and activating the Nrf-2 signaling pathway.

Food Funct

January 2025

Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang 330006, P. R. China.

derived extracellular vesicles (LAB-EVs) are nanosized particles secreted from during fermentation, and therefore exist universally in fermented foods such as yogurt, pickles, and fermented beverages. In this study, three LAB-EVs were prepared using a simple scalable method, and then their structures, compositions, and biosafety properties were characterized. The protective properties and potential mechanisms of action of the LAB-EVs against alcoholic liver disease were studied.

View Article and Find Full Text PDF

Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era.

Sci Bull (Beijing)

January 2025

Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China. Electronic address:

With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases.

View Article and Find Full Text PDF

Background: Intestinal transplantation (ITx) represents the only curative option for patients with irreversible intestinal failure. Nevertheless, its rejection rate surpasses that of other solid organ transplants due to the heightened immunological load of the gut. Regulatory T-cells (Tregs) are key players in the induction and maintenance of peripheral tolerance, suggesting their potential involvement in modulating host vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!