Genome-wide association studies have identified a signal at the SLC22A1 locus for serum acylcarnitines, intermediate metabolites of mitochondrial oxidation whose plasma levels associate with metabolic diseases. Here, we refined the association signal, performed conditional analyses, and examined the linkage structure to find coding variants of SLC22A1 that mediate independent association signals at the locus. We also employed allele-specific expression analysis to find potential regulatory variants of SLC22A1 and demonstrated the effect of one variant on the splicing of SLC22A1. SLC22A1 encodes a hepatic plasma membrane transporter whose role in acylcarnitine physiology has not been described. By targeted metabolomics and isotope tracing experiments in loss- and gain-of-function cell and mouse models of Slc22a1, we uncovered a role of SLC22A1 in the efflux of acylcarnitines from the liver to the circulation. We further validated the impacts of human variants on SLC22A1-mediated acylcarnitine efflux in vitro, explaining their association with serum acylcarnitine levels. Our findings provide the detailed molecular mechanisms of the GWAS association for serum acylcarnitines at the SLC22A1 locus by functionally validating the impact of SLC22A1 and its variants on acylcarnitine transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5630162PMC
http://dx.doi.org/10.1016/j.ajhg.2017.08.008DOI Listing

Publication Analysis

Top Keywords

slc22a1
10
role slc22a1
8
acylcarnitine transport
8
slc22a1 locus
8
serum acylcarnitines
8
variants slc22a1
8
acylcarnitine
5
fine mapping
4
mapping functional
4
functional analysis
4

Similar Publications

Tramadol-related fatalities: Metabolic ratios & SNPs/INDELs belonging to UGT1A8, UGT2B7, ABCC2, and SLC22A1.

Forensic Sci Int Genet

December 2024

CHU Lille, Unité Fonctionnelle de Toxicologie, Lille F-59000,  France; Universite de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, Lille, France.

Genetic polymorphism can cause variation in tramadol (TR) pharmacokinetic characteristics and the expected clinical response. In forensic toxicology, the data about parent and metabolite concentrations (MRs; metabolic ratios) could facilitate to determine the cause of death and to assess time between drug intake and death. In this study, the aim was to investigate if UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotyping can facilitate interpretation by investigating the frequency of UGT1A8, UGT2B7, ABCC2, and SLC22A1 genotypes in forensic autopsy cases positive for TR and to assess whether there is a correlation between these genetic variants and MRs.

View Article and Find Full Text PDF
Article Synopsis
  • Proguanil is metabolized into its active form, cycloguanil, through the OCT1 transporter and CYP2C19 enzyme, with genetic variations affecting this process.
  • The study investigated the impact of specific genetic differences (SLC22A1 polymorphisms) on how the drug is processed in the body, focusing on a Korean population.
  • The results indicate that individuals with the CT genotype of the SLC22A1 polymorphism experience higher levels of proguanil but lower levels of cycloguanil, due to reduced hepatic uptake of proguanil.
View Article and Find Full Text PDF

Morphine is a potent analgesic used for treating surgical and cancer pain. Despite being the drug of choice for the management of severe pain in children, the high interindividual variability in morphine pharmacokinetics limits its clinical utility to effectively relieve pain without adverse effects. This review was conducted to identify and describe all studies that have assessed the effect of genetic factors on the pharmacokinetics of morphine and its main metabolites in children.

View Article and Find Full Text PDF

Introduction: : Metformin, an oral hypoglycemic agent, is generally used as the first-line treatment in type 2 diabetes mellitus (T2DM) patients. The response to metformin varies between patients, and its mechanisms remain incompletely understood. Genetic variations in proteins involved in the pharmacodynamics and pharmacokinetics of metformin, like OCT1 transporter, are suspected to explain this difference.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, with death rates increasing by approximately 2-3% per year. The high mortality and poor prognosis of HCC are primarily due to inaccurate early diagnosis and lack of monitoring when liver transplantation is not feasible. Fatty acid (FA) metabolism is a critical metabolic pathway that provides energy and signaling factors in cancer, particularly in HCC, and promotes malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!