Objective: To evaluate the effects of retrograde colonic electrical stimulation (RCES) with trains of short pulses and RCES with long pulses on colonic transit in irritable bowel syndrome (IBS) rats and to investigate whether stress-induced visceral hypersensitivity could be alleviated by RCES so as to find a valuable new approach for IBS treatment.

Methods: A total of 48 male rats were randomly divided into model group and control group. Visceral hypersensitivity model was induced by a 6-day HIS protocol composed of two stressors, restraint stress for 40 min and forced swimming stress for 20 min. The extent of visceral hypersensitivity was quantified by electromyography and abdominal withdrawal reflex scores (AWRs) of colorectal distension (use a balloon) at different pressures. After the modeling, all rats were equipped with electrodes in descending colon for retrograde electrical stimulation and a PE tube for perfusing phenol red saline solution in the ileocecus. After recovering from surgery, RCES with long pulses, RCES with trains of short pulses, and sham RCES were performed in colonic serosa of rats for 40 min in six groups of 8 each, including three groups of visceral hypersensitivity rats and three groups of health rats. Colonic transit was assessed by calculating the output of phenol red from the anus every 10 min for 90 min. Finally, the extent of visceral hypersensitivity will be quantified again in model group.

Results: After the 6-day HIS protocol, the HIS rats displayed an increased sensitivity to colorectal distention, compared to control group at different distention pressures (P < 0.01). CRES with trains of short pulses and long pulses significantly attenuated the hypersensitive responses to colorectal distention in the HIS rats compared with sham RCES group (P < 0.01). The effects of RCES on rats colon transmission: In the IBS rats, the colonic emptying were (77.4 ± 3.4)%, (74.8 ± 2.4)% and (64.2 ± 1.6)% in the sham RCES group, long pulses group and trains of short pulses group at 90 min; In healthy rats, The colonic emptying was (65.2 ± 3.5)%, (63.5 ± 4.0)% and (54.0 ± 2.5)% in the sham RCES group, long pulses group and trains of short pulses group at 90 min.

Conclusion: RCES with long pulses and RCES with trains of short pulses can significantly alleviate stress-induced visceral hypersensitivity. RCES with trains of short pulses has an inhibitory effect of colonic transit, both in visceral hypersensitivity rats and healthy rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apjtm.2017.07.017DOI Listing

Publication Analysis

Top Keywords

visceral hypersensitivity
24
electrical stimulation
12
colonic transit
12
retrograde colonic
8
colonic electrical
8
stress-induced visceral
8
rats
8
hypersensitivity rats
8
irritable bowel
8
bowel syndrome
8

Similar Publications

Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.

Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?

Materials And Methods: Narrative review.

View Article and Find Full Text PDF

Cisplatin, a chemotherapeutic drug, is known for causing gastrointestinal disorders and neuropathic pain, but its impact on visceral sensitivity is unclear. Monosodium glutamate (MSG) has been shown to improve gastrointestinal dysmotility and neuropathic pain induced by cisplatin in rats. This study aimed to determine if repeated cisplatin treatment alters visceral sensitivity and whether dietary MSG can prevent these changes.

View Article and Find Full Text PDF

Among the various factors implicated in the pathogenesis of gastroesophageal reflux disease (GERD), visceral hypersensitivity and mucosal resistance have been recently re-evaluated in relation to the increasing phenomenon of proton pump inhibitor failure, particularly in patients with nonerosive reflux disease (NERD). Intensive research has allowed us to understand that noxious substances contained in the refluxate are able to interact with esophageal epithelium and to induce the elicitation of symptoms. The frequent evidence of microscopic esophagitis able to increase the permeability of the mucosa, the proximity of sensory afferent nerve fibers to the esophageal lumen favoring the higher sensitivity to noxious substances and the possible activation of inflammatory pathways interacting with sensory nerve endings are pathophysiological alterations confirming that mucosal resistance is impaired in GERD patients.

View Article and Find Full Text PDF

Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

View Article and Find Full Text PDF

Background: Disorders of gut-brain interaction (DGBI) predominate in women, but little is known about sex differences in menses-related or menopause symptoms.

Methods: Using data from the Rome Foundation Global Epidemiology Survey, we assessed Rome IV DGBI symptoms in individuals in 26 countries who met criteria for ≥ 1 of 5 DGBI: irritable bowel syndrome (IBS), functional dyspepsia (FD), functional constipation (FC), functional diarrhea (FDr), or functional bloating (FB). Participants included pre- and post-menopausal women with DGBI and age-matched men.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!