Purpose: To investigate the ultrastructure of the lens epithelial cells (LECs) in patients with idiopathic congenital cataract.
Methods: This is a prospective interventional study. The anterior lens capsules (aLC: basement membrane and associated LECs) were taken from 16 eyes of 12 consecutive patients who were diagnosed as having idiopathic congenital cataracts. The aLCs were obtained from cataract surgery and prepared for transmission electron microscopy (TEM).
Results: Some significant ultrastructural changes were observed in all aLCs of the participants. The anterior LECs showed alterations in different areas which were partly cuboidal and partly squamous in shape. The LECs had euchromatic nucleus and included some vacuoles in the cytoplasms as a remarkable alteration. The sizes of these intraepithelial cell vacuoles were changeable.
Conclusions: We identified remarkable changes in LECs of the eyes with idiopathic congenital cataract by TEM. It can be assumed that oxidative damage may be associated with these ultrastructural changes in LECs of the eyes with idiopathic congenital cataracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10792-017-0713-1 | DOI Listing |
Discov Med
December 2024
Department of Biological Hematology, Tours University Hospital, 37000 Tours, France.
Aldehyde dehydrogenases (ALDHs) constitute a group of enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The human ALDH superfamily, including 19 different isoenzymes (ALDH1A1, ALDH1A2, ALDH1A3, AHDH1B1, ALDH1L1, ALDH1L2, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDHA16A1, ALDH18A1), displays different key physiological and toxicological functions, with specific tissue expression and substrate specificity. Several studies have established that ALDH are interesting markers for the identification and quantification of human hematopoietic stem cells and cancer stem cells, notably leukemic stem cells.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFJ Family Med Prim Care
November 2024
Flinders University College of Medicine and Public Health, Adelaide, Australia.
Up to 10% of uveitis cases occur in children, with notable implications due to the risk of chronicity and vision loss. It can result from infections, autoimmune and autoinflammatory diseases, trauma, or masquerade syndromes. Primary care providers are vital in early detection, symptom management, and timely specialist referral.
View Article and Find Full Text PDFCase Rep Genet
December 2024
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Aichi, Japan.
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder caused by heterozygous pathogenic variants and is characterized by both progressive heterotopic ossification of the soft tissues and congenital malformations of the great toe. In addition to pathological skeletal metamorphosis, patients with FOP experience diverse neurological symptoms such as chronic pain and involuntary movements; however, little is known about the association between FOP and epileptic seizures. We report the case of a young boy with FOP who sustained multiple major fractures due to epileptic loss of consciousness.
View Article and Find Full Text PDFInt J Cardiol Congenit Heart Dis
September 2024
Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
Pulmonary hypertension (PH) is a serious potential complication of some congenital heart diseases (CHDs). PH encompasses a range of diseases which may be idiopathic or inherited, or secondary to cardiac, respiratory, systemic or thromboembolic conditions, amongst others. Our increasing understanding of the normal ranges of pulmonary haemodynamics, as well as evidence supporting the benefits of early treatment, has resulted in a number of recent revisions to the haemodynamic definition of PH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!