Seasonal variation of indoor radon concentration in a desert climate.

Appl Radiat Isot

Department of Basic Sciences, College of Science and Health Profession, King Saud Bin Abdulaziz University for Health Sciences (KSAUHS), P. O. Box 22490, Riyadh 11426, Saudi Arabia.

Published: December 2017

Radon is one of the sources that negatively affect dwellings air quality and is ranked as a main cause of lung cancer after cigarette smoking. The indoor radon concentrations usually affected by the conditions of the environment surrounding the dwellings. Seasonal variations can have a significant impact on the indoor radon concentrations. In this article, we studied the seasonal variations of indoor radon concentration in a desert climate, particularly in gulf countries that usually leave the windows and doors closed all over the time. Four hundred dosimeters containing CR-39 detectors were planted for three months to measure the variation in radon concentration between winter and summer seasons. Our measurements showed that a building with a basement revealed a significant variation between radon concentration in winter (44.3 ± 3.1Bqm) and in summer (26.1 ± 1.7Bqm). Buildings without basements showed that the indoor radon concentration in winter (16.1 ± 1.7Bqm) is very much close to that in summer (16.7 ± 1.8Bqm). Our results indicated that seasonal variations can significantly affect indoor radon concentration for buildings established with basements. However; in the study region, the average indoor radon concentration as well as the annual effective dose rate are found to be below the action level recommended by ICRP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2017.08.017DOI Listing

Publication Analysis

Top Keywords

indoor radon
28
radon concentration
28
seasonal variations
12
concentration winter
12
radon
10
concentration desert
8
desert climate
8
radon concentrations
8
variation radon
8
indoor
7

Similar Publications

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Assessment of radon level and the associated radiological risk from soil samples of quarry area at Hakim Gara, Ethiopia.

Environ Monit Assess

December 2024

School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.

Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.

View Article and Find Full Text PDF

Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.

Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.

View Article and Find Full Text PDF

Indoor Radon Survey in 31 Provincial Capital Cities and Estimation of Lung Cancer Risk in Urban Areas of China.

Biomed Environ Sci

November 2024

Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.

Objective: We aimed to analyze the current indoor radon level and estimate the population risk of radon-induced lung cancer in urban areas of China.

Methods: Using the passive monitoring method, a new survey on indoor radon concentrations was conducted in 2,875 dwellings across 31 provincial capital cities in Chinese mainland from 2018 to 2023. The attributable risk of lung cancer induced by indoor radon exposure was estimated based on the risk assessment model.

View Article and Find Full Text PDF

In this study, the occupational radiation dose, radon gas, and non-ionizing radiation doses originating from electromagnetic fields (EMF) to which radiation workers are exposed were monitored and evaluated for 1 y. Using electronic personnel dosimeters (EPD), average daily radiation doses based on the number of patients and annual average effective dose results of radiation workers were obtained over a period of 1 y. Also, the annual effective dose and risk values were calculated for 8 h and 24 h by taking radon gas measurements at 2-mo intervals in the nuclear medicine department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!