GdOS:Er crystals were prepared through high-temperature solid-state reaction method in vacuum, with the vacuum synthesis mechanism determined by thermal analysis. The crystal structure and upconversion luminescence properties were investigated respectively by XRD, TEM and spectrophotometer. Well crystallized GdOS:Er phosphors were prepared under 1000°C in vacuum with a certain excessive amount of sulfur content than stoichiometric. It is confirmed that with the increasing sulfur content the green emission was enhanced and red emission was weakened. The cooperative upconversion luminescence of Er in non-stoichiometric GdOS crystals was interpreted as a result of two photon absorption and the photon avalanche process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2017.09.023 | DOI Listing |
Nanoscale
January 2025
Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Luminescence thermometry has emerged as a promising approach for remote, non-invasive temperature sensing at the nanoscale. One of the simplest approaches in that regard is single-ion luminescence Boltzmann thermometry that exploits thermal coupling between two radiatively emitting levels. The working horse example for this type of luminescence thermometry is undoubtedly the green-emitting upconversion phosphor β-NaYF:Er,Yb exploiting the thermal coupling between the two excited H and S levels of Er for this purpose.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!