The 2014 Ebola outbreak in West Africa required the rapid testing of clinical material for the presence of potentially high titre Ebola virus (EBOV). Safe, fast and effective methods for the inactivation of such clinical samples are required so that rapid diagnostic tests including downstream analysis by RT-qPCR or nucleotide sequencing can be carried out. One of the most commonly used guanidinium - based denaturing agents, AVL (Qiagen) has been shown to fully inactivate EBOV once ethanol is added, however this is not compatible with the use of automated nucleic acid extraction systems. Additional inactivation agents need to be identified that can be used in automated systems. A candidate inactivation agent is Triton X-100, a non-denaturing detergent that is frequently used in clinical nucleic acid extraction procedures and has previously been used for inactivation of EBOV. In this study the effect of 0.1% and 1.0% Triton X-100 (final concentration 0.08% and 0.8% respectively) alone and in combination with AVL on the viability of EBOV (10 TCID/ml) spiked into commercially available pooled negative human serum was tested. The presence of viable EBOV in the treated samples was assessed by carrying out three serial passages of the samples in Vero E6 cells (37°C, 5% CO, 1 week for each passage). At the end of each passage the cells were observed for evidence of cytopathic effect and samples were taken for rRT-PCR analysis for the presence of EBOV RNA. Before cell culture cytotoxic components of AVL and Triton X-100 were removed from the samples using size exclusion spin column technology or a hydrophobic adsorbent resin. The results of this study showed that EBOV spiked into human serum was not fully inactivated when treated with either 0.1% (v/v) Triton X-100 for 10 mins or 1.0% (v/v) Triton X-100 for 20 mins (final concentrations 0.08% and 0.8% Triton X-100 respectively). AVL alone also did not consistently provide complete inactivation. Samples treated with both AVL and 0.1% Triton X-100 for 10 or 20 mins were shown to be completely inactivated. This treatment is compatible with downstream analysis by RT-qPCR and next generation sequencing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2017.09.020 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France.
Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Orthopedics, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China.
In bone tissue engineering, a suitable scaffold is the key. Due to their similar composition to bone tissue, special structure, good mechanical properties, and osteogenic properties, acellular fish scale scaffolds are potential scaffolds for bone tissue engineering. At present, the fish scale decellularization scheme mostly uses a combination of sodium dodecyl sulfate and ethylenediamine tetraacetic acid (EDTA), but this method has problems.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!