Background: Myocardial contractile dysfunction in sepsis has been attributed mainly to increased inflammatory cytokines, insulin resistance, and impaired oxidative phosphorylation of fatty acids (FAs). However, precise molecular mechanisms underlying the cardiac dysfunction in sepsis remain to be determined. We previously reported major shift in myocardial energy substrates from FAs to glucose, and increased hepatic ketogenesis in mice lacking fatty acid-binding protein 4 (FABP4) and FABP5 (DKO).
Purpose: We sought to determine whether a shift of energy substrates from FAs to glucose and increased availability of ketone bodies are beneficial or detrimental to cardiac function under the septic condition.
Methods: Lipopolysaccharide (LPS, 10mg/kg) was intraperitoneally injected into wild-type (WT) and DKO mice. Twelve hours after injection, cardiac function was assessed by echocardiography and serum and hearts were collected for further analyses.
Results: Cardiac contractile function was more deteriorated by LPS injection in DKO mice than WT mice despite comparable changes in pro-inflammatory cytokine production. LPS injection reduced myocardial uptake of FA tracer by 30% in both types of mice, while uptake of the glucose tracer did not significantly change in either group of mice in sepsis. Storage of glycogen and triacylglycerol in hearts was remarkably increased by LPS injection in both mice. Metabolome analysis revealed that LPS-induced suppression of pool size in the TCA cycle was more enhanced in DKO hearts. A tracing study with C-glucose further revealed that LPS injection substantially reduced glucose-derived metabolites in the TCA cycle and related amino acids in DKO hearts. Consistent with these findings, glucose oxidation in vitro was similarly and markedly reduced in both mice. Serum concentration of β-hydroxybutyrate and cardiac expression of genes associated with ketolysis were reduced in septic mice.
Conclusions: Our study demonstrated that LPS-induced cardiac contractile dysfunction is associated with the robust suppression of catabolism of energy substrates including FAs, glucose and ketone bodies and accumulation of glycogen and triacylglycerol in the heart. Thus, a fuel shift from FAs to glucose and/or ketone bodies may be detrimental rather than protective under septic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2017.09.003 | DOI Listing |
Sci Adv
January 2025
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Controlling the reactivity of bonds along polymer chains enables both functionalization and deconstruction with relevance to chemical recycling and circularity. Because the substrate is a macromolecule, however, understanding the effects of chain conformation on the reactivity of polymer bonds emerges as important yet underexplored. Here, we show how oxy-functionalization of chemically recyclable condensation polymers affects acidolysis to monomers through control over distortion and interaction energies in the rate-limiting transition states.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry and Pharmacy, Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
Mucins are the macromolecular key components of mucus. On wet epithelia of mammals, mucin solutions and gels act as powerful biolubricants and reduce friction and wear by generating a sacrificial layer and establishing hydration lubrication. Yet the structure-function relationship of mucin adhesion and lubrication remains elusive.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201309, India.
Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Beihang University, Beijing 100191, China.
Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!