The study aimed to investigate the mechanism by which the sonic Hedgehog (SHH) gene silencing acts upon epithelial-mesenchymal transition (EMT), proliferation, invasion, and migration of cervical cancer (CC) cells via the Hedgehog signaling pathway. RT-qPCR and Western blotting were all employed to detect the SHH mRNA and protein expressions. HeLa and CasKi cells were cultured and subsequently divided into the blank, negative control (NC), and SHH-RNAi groups. A cell counting kit-8 (CCK-8) assay was utilized for cell proliferation. Cell migration and invasion ability were evaluated through scratching test and Transwell assay. The mRNA and protein expressions of the Hedgehog signaling pathway-related factors were detected using RT-qPCR and Western blotting, respectively. After tumor xenograft in nude mice, tumor growth was subsequently observed. SHH mRNA and protein expressions were greater in the SHH-RNAi group than in the blank and NC groups. Compared with the blank group and NC groups, the SHH-RNAi group displayed inhibited levels of proliferation, migration, invasion abilities, as well as a decreased in the Hh signaling pathway-related factors, as well as a reduction in the mRNA and protein expressions of N-cadherin and Vimentin, however, on the contrary increased expressions of E-cadherin were observed. Following tumor xenograft in nude mice, tumor growth was exhibited vast levels of inhibition, particularly in the SHH-RNAi group in comparison to the blank and the NC groups. During the study it was well established that SHH gene silencing suppresses EMT, proliferation, invasion, and migration of CC cells through the repression of the Hedgehog signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.26414DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
16
mrna protein
16
protein expressions
16
shh gene
12
gene silencing
12
proliferation invasion
12
invasion migration
12
signaling pathway
12
shh-rnai group
12
silencing suppresses
8

Similar Publications

Genomic profiling of intimal sarcoma reveals molecular subtypes with distinct tumor microenvironments and therapeutic implications.

ESMO Open

January 2025

Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea. Electronic address:

Background: Intimal sarcoma is a rare and aggressive soft-tissue sarcoma with limited treatment options. We explored genomic profiles of intimal sarcoma to uncover therapeutic implications.

Materials And Methods: We analyzed tumor tissues from patients with intimal sarcoma who visited the Seoul National University Hospital (SNUH) using whole-exome, whole-transcriptome, and clinical next-generation sequencing (NGS), integrated with intimal sarcoma NGS data from two public cohorts.

View Article and Find Full Text PDF

Wnt Signaling Pathway in Tumor Biology.

Genes (Basel)

December 2024

Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania.

Relapse and metastasis are the major challenges that stand in the way of cancer healing and survival, mainly attributed to cancer stem cells (CSCs). Their capabilities of self-renewal and tumorigenic potential leads to treatment resistance development. CSCs function through signaling pathways such as the Wnt/β-catenin cascade.

View Article and Find Full Text PDF

Hedgehog Signaling Pathway in Fibrosis and Targeted Therapies.

Biomolecules

November 2024

Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China.

Hedgehog (Hh) signaling is a well-established developmental pathway; it is crucial for early embryogenesis, cell differentiation, and damage-driven regeneration. It is being increasingly recognized that dysregulated Hh signaling is also involved in fibrotic diseases, which are characterized by excessive extracellular matrix deposition that compromises tissue architecture and function. As in-depth insights into the mechanisms of Hh signaling are obtained, its complex involvement in fibrosis is gradually being illuminated.

View Article and Find Full Text PDF

The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.

View Article and Find Full Text PDF

Predicting hepatocellular carcinoma outcomes and immune therapy response with ATP-dependent chromatin remodeling-related genes, highlighting MORF4L1 as a promising target.

Cancer Cell Int

January 2025

Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.

Background: Hepatocellular carcinoma (HCC) continues to be a major cause of cancer-related death worldwide, primarily due to delays in diagnosis and resistance to existing treatments. Recent research has identified ATP-dependent chromatin remodeling-related genes (ACRRGs) as promising targets for therapeutic intervention across various types of cancer. This development offers potential new avenues for addressing the challenges in HCC management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!