A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppressing angiogenesis regulates the irradiation-induced stimulation on osteoclastogenesis in vitro. | LitMetric

Ionizing radiation-induced bone loss is a potential health concern in radiotherapy, occupational exposure, and astronauts. Although impaired bone vasculature and reduced proliferation of bone-forming osteoblasts has been implicated in this process, it has not been clearly characterized that whether radiation affects the growth of bone-resorbing osteoclasts. The molecular crosstalk between different cell populations in the skeletal system has not yet been elucidated in detail, especially between the increased bone resorption at early stage of post-irradiation and bone marrow-derived endothelial progenitor cells (BM-EPCs). In order to further understand the mechanisms involved in radiation-induced bone loss at the cellular level, we assessed the effects of irradiation on angiogenesis of BM-EPCs and osteoclastogenesis of receptor activator for nuclear factor-κB ligand (RANKL)-stimulated RAW 264.7 cells and crosstalk between these cell populations. We herein found significantly dysfunction of BM-EPCs in response to irradiation at a dose of 2 Gy, including inhibited proliferation, migration, tube-forming abilities, and downregulated expression of pro-angiogenesis vascular endothelial growth factors A (VEGF A). Meanwhile, we observed that irradiation promoted osteoclastogenesis of RANKL-stimulated RAW 264.7 cells directly or indirectly. These results provide quantitative evidences of irradiation induced osteoclastogenesis at a cellular level, and strongly suggest the involvement of osteoclastogenesis, angiogenesis and crosstalk between bone marrow cells in the radiation-induced bone loss. This study may provide new insights for the early diagnosis and intervention of bone loss post-irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26196DOI Listing

Publication Analysis

Top Keywords

bone loss
16
radiation-induced bone
12
bone
8
crosstalk cell
8
cell populations
8
cellular level
8
rankl-stimulated raw
8
raw 2647
8
2647 cells
8
osteoclastogenesis
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!